Battelle

Overcoming Challenges and Closure-Strategy Development at a Long-Term Large-Scale CVOC Bioremediation/Thermal Project

Matthew A. Panciera, P.E., L.E.P.

April, 12, 2018

Overview

- Contributing authors:
 - Dustin Bytautas, P.E. (AECOM)
 - Rory Henderson (AECOM)
 - Lucas A. Hellerich, Ph.D., P.E., L.E.P. (AECOM)
 - Tomasz Kalinowski, Ph.D.
- Conceptual Site Model
- Remediation Goals/Objectives
- Overview of Remediation Project
 - On-Site Source Area
 - o Thermal and Biopolishing Remedial Performance
 - Off-Site Plume Area
 - o Bioremediation Performance and Observations
 - Lessons Learned
- Overcoming Challenges
- Closure-Strategy Development
- Conclusions

Site Background

Conceptual Site Model- Plan View (2009, Pre-Treatment)

Conceptual Site Model- Cross-Section

Remediation Goals

- Remove the Source
- Mitigate Discharge of CVOCs to the On-Site Pond and Wetland Stream
- Reduce Groundwater Plume Footprint
- Transition to Monitored Natural Attenuation

Remediation Criteria (µg/L)

COC	Source Area Goal ¹	Wetland Stream ASWPC ²		
PCE		50.4		
TCE	760 ³	34.3		
c-1,2-DCE		620		
t-1,2-DCE		560		
1,1-DCE		210		
VC		38.5		
As ⁴		150		
Fe ⁴		2,000		
Mn ⁴		1,930		

1. A cleanup goal in the source area was only developed for TCE.

2. ASWPC = Alternative Surface Water Protection Criteria

- 3. Model derived goal
- 4. Criteria for temporarily mobilized metals

Remediation Project Overview

8

Summary of Source Area Remediation

- Targeted excavations (2009)
 - Targeted excavation of multiple AOCs
 - Continued monitoring for compliance (2009-Present)
- Electrical resistance heating (Oct 2010-July 2011)
 - Phased operation
 - Focused on overburden and weathered bedrock
 - 27,000 ft², 12 to 45 ft bgs = 30,900 CY
 - 89 electrodes
 - Average temp = 95°C
 - Removed 600 lbs TCE
- Biopolishing (2013)
 - 5000 ft²
 - 27 wells

9

- 19-37.5 ft bgs
- Target was deep overburden and weathered bedrock
- 735 gal. EVO (EOS[™]) diluted in ~46,000 gal. water (1.6%)

Source Area Performance to Date

• Results

- Monitoring July 2011 to Present
- >90% reduction of baseline mass flux
- Monitoring wells meet TCE cleanup criteria
- No further EVO injections
- Soil Compliance Achieved in 2016

Summary of Off-Site Remediation

- Enhanced reductive dechlorination
 - Overburden and weathered bedrock
 - Approx. 12 acre plume, 10 to 40 ft bgs, 4 biobarriers
 - 600 injection wells installed
 - 24,000 gallons EVO (EOS™)
 - Bioaugmentation (SiREM KB-1[®])
 - 700,000 gallons dilute substrate injected to date
 - Monitoring June 2010 to present
 - Four injection events
 0 2010/2011, 2013, 2015 & 2017
 - 2017 anticipated to be final injection event

Off-Site Performance to Date

Results

- Continued significant reduction in plume size
- Reducing conditions continue to persist in most off-site locations
- Barriers are operating as intended although some recalcitrant pockets still exist
- Data collected from key wells in 2017 indicate TCE conducting to decrease in areas of exceedance

Goals of 2017 Off-Site Injections

- Treat continued VOC fluxinto Barrier 1
- Substrate replenishment to maintain barrier operation for next several years.
- Treat recalcitrant pockets of VOCs

Overcoming Challenges

Application In WetlandInjection OptimizationBig Data Streams

Treatment in Wetland

- Wetland with shallow water table
 - >100 temporary mats installed for safe travel across wetland
- Access Agreements for Biennial Access to Staging Area
- Treatment Barriers located >500 ft away from staging area
 - Installed temporary road w/stream crossing connecting treatment barriers to staging area
 - Install conduit along roadway for substrate, power, and emergency shut-off

Injection Optimization

- Injection Planning/Substrate Dosing
 - Utilize data evaluation to determine substrate dosage based on recent performance monitoring data
- Daylighting/Biofouling
 - Clean injection wells using traditional well development methods
 - Use direct push injections
 - Modify substrate concentrations

Injection Optimization

- Substrate Shelf Life
 - Insulated and installed A/C in storage unit to maintain low temperatures to maximize shelf life of substrate
- Maintaining Anaerobic Conditions
 - Dosed source water with sodium sulfite in water holding tanks to create anaeorbic conditions before injecting

June 2017

16

Dealing with Big Data

- Extensive Performance Monitoring Plan
 - Too large for traditional data analysis methods
- Daily downloads during injections
 - Comprehensive injection parameter tracking

Dealing with Big Data

- The "R" Solution
 - Developed Site specific programs for automating performance data analysis
 - Modeling tools to visualize progress of remediation

Select Chemicals	1	- tel		50 m OSP-0 200 ft 1588	35	
cis-1,2-Dichloroethene Vinyl Chloride		A. Const	×			
Trichloroethene (TCE) Ethene		6	1 . 1988	e l	N	Point Shane Lanand
pH		-		en 1000 -		Compound Detected
Total Organic Carbon		SA AM	A Cart		a pad	Compound Not Detected
Tetrachioroethene (PCE)		10 2		Come		 Tschursethere (TCE)
trans-1,2-Dichloroethene	232	AND FOR	H RA		7	 cia-1_2-Dichiarcethere Viryl Chiarbe
1,1-Dichloroethene		1 ··· · · · · · · · · · · · · · · · · ·	1 Parts	Contraction of the second		+ Ebere
Nitrate	29		and the	No. of the other	r	
Cullete	83	at 1 and	Sten 3		1 A A	
	Show	10 entries	Trichloroethene	CE) cis-12-Dichloroeth	2012 2014 2014 Date Search:	Ethene
	1	2010-02-17	15000	140	< 16	
	2	2010-12-06	9000	620	< 400	
	з	2011-03-01	8900	280	< 16	1.10
	4	2011-06-08	12000	970	66	
	5	2011-09-23	11000	2200	130	27
		Yes an oral set	8000	960	66	16
	6	2011-12-06	6900	300	60	10

Closure Strategy Development

Closure Strategy Development – Regulatory Framework

Existing Framework

- State lead, original order issued in 1987
- Over 10 years of active remediation
- Site located in a GA/GAA groundwater zone
 Sole source aquifer, no reclassification of groundwater
- Site-specific criteria and technical impracticability (TI) waiver
- TI waiver conditionally approved, final pending:
 - \circ Completion of remediation in accordance with the RAP
 - o Implementation of post-remediation monitoring plan
 - o Delineation of final TI Zone
 - Record ELURs for on-site and off-site areas
- Alternative surface water protection criteria (SWPC) supersedes default SWPC

Closure Strategy Development – Near Term Challenges

- Access

- Site Location and Future Access
 - $_{\rm O}$ Site is bisected by rail
 - o Offsite areas are accessed through neighboring property.
- Access is arranged through 2019
- Future Stakeholder Input
 - Finalization of TI waiver may require ELURs on adjacent properties
 - May not be able to compel property owners
- Expiration of Permits
 - Wetland, Injection permits expire in 2019
- Expectation of Full Demobilization during 2019

Closure Strategy Development - Recent Successes

Soil AOCs achieved compliance in 2017

22

- 2017 injections will last for >5 years of continued remediation
- 2018 activities includes "Deep Dive" on groundwater remedy performance with respect to original plan and recent regulatory changes
 - Likely we will have the ability to modify original alternative criteria

Closure Strategy Development – Identifying Future Risks

– Questions:

- Remaining concentrations in groundwater, post-2017 injections?
- Is plume stable, trends reducing, and what about remaining "recalcitrant" areas?
- Attenuation beyond the life of the barriers?
- Receptors at concentrations above the remedial goals? For how long?
- Short-term, more aggressive remediation necessary? (e.g. excavation, ISCO)
- Deep Dive Remedy Evaluation and Regulatory Engagement key 2018 activity and critical for continued progress toward closure with regulatory buy-in.

Closure Strategy Development – Decision Framework

Closure Strategy Development – Major Milestone Timeframes

Next steps

- Conduct deep-dive performance evaluation on remedy for entire site (2018)
- Transition from active remediation to plume stability monitoring (2018-2019)
- Initiate TI Waiver requirements (2019)
- Transition to stewardship and long term monitoring (2019-2034)
- Ultimate goal of returning property to productive use with near-term goal of onsite redevelopment

Battelle

2018 Chlorinated Conference | April 8-12 | Palm Springs, CA

Thank You!

T 860-263-5742 E matthew.panciera@aecom.com