

Decision Support Tool for Vadose Zone Remediation of Volatile Contaminants

MICHAEL TRUEX¹, CHRIS JOHNSON¹, JENNIFER SEGURA², ROB HINCHEE³, AND DAVE BECKER⁴

¹ Pacific Northwest National Laboratory

US Navy, NAVFAC EXWC
Integrated Science and Technology, Inc.
U.S. Army Corps of Engineers

Introduction

- Remedy monitoring is applied to assess remedy performance, but may be insufficient to support a decision to terminate a remedy such as Soil Vapor Extraction.
- ▶ Decision tools are needed for define the end state for SVE because contaminant transport needs to be considered.

Technology/Methodology Description

Vadose Zone Contamination

- SVE effectively removes contaminant vapors, but typically cannot remove all of the contaminant mass – diminishing returns.
- Do contaminants that remain after a period of SVE operation pose a risk?
 - Where is the persistent source?
 - How strong is the source (contaminant mass discharge/concentration)?
 - What is the contaminant transport toward points of concern?
- At some sites: Is SVE needed?

Key Reference Documents

- Soil Vapor Extraction System Optimization, Transition, and Closure Guidance
 - http://bioprocess.pnnl.gov/SVEET_Request.htm
- Vapor Intrusion Estimation Tool For Unsaturated-Zone Contaminant Sources
 - http://bioprocess.pnnl.gov/VIETUS_Request.htm
- Estimating the Impact of Vadose Zone Sources on Groundwater to Support Performance Assessment of Soil Vapor Extraction. Ground Water Monitoring and Remediation

SVEET Tool

Proudly Operated by Battelle Since 1965

4	Α	В	С	D	Е	F	G	Н	1	J		K	L
21	SVE E	Indstate Tool (SVEET)			Version 1.0.	0 [Parameter	Permissible R	ango	Ko	y Values	
22	Describe	ed in: Soil Vapor Extraction System Option	ransition, and Closui	re Guidance	2012-Sep-2	4	Name	Providence and the second	ange	N.C	51/30/40/30/30/30		
23								Τ	10 - 30 1 - 9 a			20 1, 5, 9 ^a	
24	User Inp	out						R	0.4 - 7.5°			0.4	
25		Scenario Name:	10_20	Case A	Case B	Case C	1	VZT	10 - 60		10	0, 30, 60	
26		Contaminant:	100	СТ	TCE	TCE		L1	varies c			-	
27	Т	Temperature:	[°C]	19.6	20	20		Z	varies ⁰			8 — 8	Allow ω down to
30	ω	Avg. Moisture Content:		8	1	1		W	10 - 50 °				Sr = 0.05? FALSE
31	R	Avg. Recharge:		0.5	0.5	0.5		q d	0.005 - 0.3 10 [†] , 25, 50, 75			5, 0.03, 0.3 , 50, 75, 100	
32	VZT	Vadose Zone Thickness:	[m]	60	30	30	11	s	5 - 30	, 100	10, 20	5	
33			0.000	40	1000	0.0	+lt	Cos	1 - 2000			159	
	L1	Depth to Top of Source:	[m]		21	21	+	Msrc	0.1 - 5000	ĺ.	from STO	OMP simulations	
34	Z	Source Thickness:	[m]	10	5	5	₩		San factor	tor holow	at 3 mpn	ins elapsed time	
35	w (= I)	Source Width (= Length):	[m]	50	15	15		See footnotes below.					
36	q	GW Darcy Velocity:	-	0.3	0.165	0.165	Ш			0.000	harge		
37	d	Distance to Compliance Well:	[m]	25	50	50		(T)		4	· 4	>	
38	S	Compl. Well Screen Length:	[m]	5	10	10		(Τ, ω)					
39		Source Strength Input Type:	-	Gas Concentration	Gas Concentration	Mass Discharge		<u></u>		1			П
40	Cas	Source Gas Concentration:	[ppmv]	159	50								
41	M _{src}	Source Mass Discharge:	[g/day]			10		1	1		V	adose Zo	ne Ne
42	IVISIC	Courte Mass Discharge.	[g/ddy]			10	6						<u> </u>
									L1	1	W		Compliance
		ted Input		0.407	0.407	0.407			W/				<u>a</u>
46	STR	Source Thickness Ratio*:	[]	0.167	0.167	0.167					Soul	rce /	Ε
48	SA	Areal Footprint of Source*:	[m²]	2500	225	225		VZT	Z		/	d	→ 3
50	RSP	Relative Source Position*:	[]	4.00	5.25	5.25			1			•	
52	L2	Distance – Source to GW:	[m]	10.00	4.00	4.00							
53	Н	Henry's Law Constant**:	[]	0.890	0.263	0.263			L2				sţ
61											Gro	undwater	218
62	Result -	- Estimated Groundwater Contam	inant Cor	ncentration at Se	lected Complian	ce Well		•	+ ₹				
65	Cw	Final Groundwater Conc'n:	[µg/L]	16	15	31		─	> q		(Cont	aminant, C	C _{gs} or M _{src})
66	- vv		11-31										
67		* See below for permissible ranges of i	ntermediat	e calculated values									
68		** See the 'HLC' worksheet for details of			alculation of H								
69		oce the file worksheet for details of	and tempe	rature-dependent ce	acaidion or it.								
	 	a Tho	pro modele	scenarios actually	uso residual setura	tion (S) not	C TL	o rongo fe- l	1 io variable (···i	h a me:		ange of 0 F	10 m) boogus-
70	Parameter Name	Range Key Values gravi	netric moist	ure content. Howeve	r, for user convenien	ce gravimetric			1 is variable (wit of the permissibl				
71	STR	0.1 - 0.5 0.1, 0.25, 0.5 moist	ure content	is used as the input	parameter. The key	values for S _r	and	d VZT.	·				
72	SA	100 - 2300 100, 400, 300, 2300		nd 0.55, which corres and 8.879, respective					is variable (with the permissible r				
73	RSP L2	0.1 - 10 0.1, 1, 10 moist	ure content	range is truncated a	at 1 wt% and extend	ed to 9 wt%,	e Th	e range for	w is a function	of the			
74	H	contaminant-		at orabove 8.879 wt% of the estimation					of the source ar th must be less t		nusl to	20 m to uso	1 = 10
75		specific 0.09 THE	med for site	s with recharge betwe	en 2.5 and 7.5 cm/yr.	See Section		e source wid	ur must be less t	nan or e	quai (0	ZV III IU USE	u – 10.
76		4.2.2	1 of the	PNNL report entitle	d Soil Vapor Extra	ction System							
77		Optin	nzauon, ira	namon, and Closure G	uluarice for further dis	cussion.							
78							\top						
70													
14	← → →	Notice SVEET HLC											

Calculation Approach

Relationship of Source and Output

Technical Basis

The presence of discrete source zones (versus a uniformly distributed source) within the same portion of the vadose zone only has a small effect on simulated groundwater well concentrations, even to a small effective source volume (Truex et al. 2013).

SVE Data – Source Strength

- Data from the SVE system can be used to quantify source strength as contaminant mass discharge.
- Rebound analysis estimates source strength if SVE is terminated. Can use this information to evaluate whether this source poses a risk.

SVE Data - Source Location

Carroll et al. 2012, 2013; Truex et al. 2012; Mainhagu et al. 2014; Brusseau 2015

Transport Calculations

- Approach uses a limited set of parameters based on examining the effect of parameters on long-term vapor and groundwater concentrations
- Approach uses 3D multiphase transport because this was shown to be important to estimating transport for volatile contaminants.
- Spreadsheet tool assesses results of pre-modeled scenario results
 - Interpolates to give results relevant to site-specific conditions
 - Enables sensitivity analyses to be rapidly conducted

Technical Basis for Parameters

- Because VOC transport was simulated until steady state conditions were obtained, the effects of sorption could be neglected (Carroll et al., 2012)
- Sorption may delay the impact to groundwater, but has minimal impact on the overall long-term contaminant distribution if the source strength remains constant

Pre-Modeled Scenarios

- STOMP (Subsurface Transport Over Multiple Phases) was used (White and Oostrom, 2006)
- Fully-implicit, integrated finite difference model
- Applicable governing equations are the component mass-conservation equations for water, organic compounds, and air
- Simulations were conducted for Base Case (bold) and 971 other cases
- Groundwater concentrations at wells located 10, 25, 50, 75, and 100 m downstream are computed.

Name	Symbol	Simulated Values
gravimetric moisture content (%)	ω	1 , 3, 5, 7, 9
vadose zone thickness (m)	VZT	10, 20, 30, 45, 60
source thickness ratio (-)	STR	0.1 , 0.25, 0.5
relative source position (-)	RSP	0.1, 0.5, 1 , 5, 10
source area (m²)	SA	100 , 400, 900, 2500
groundwater Darcy velocity (m/d)	q	0.05, 0.0175, 0.03, 0.165, 0.3
source gas concentration (mg/L)	C_{qs}	1 , 2, 10, 20
Henry's Law coefficient	Ĥ	0.1, 0.5, 0.89 , 1.0
compliance well screen length (m)	S	5 , 10, 20
recharge rate (cm/yr)	R	0.4, 0.8, 2, 4, 7.5

(Oostrom et al., 2014)

Comparison of STOMP simulations and interpolations (Oostrom et al. 2014)

Parameter	Test Case 1	Test Case 2	Test Case 3	Test Case 4	
ω	3%	3%	7%	7%	
STR	0.175	0.175	0.375	0.375	
VZT	20	20	45	45	
SA	250 m ²	250 m ²	1700 m ²	1700 m ²	
q	0.0175 m/d	0.165 m/d	0.0175 m/d	0.165 m/d	
RSP	0.55	0.55	5.5	5.5	

Tool Updates

- Provide soil gas concentrations at two depths across the whole model domain
- Provide groundwater concentration at any location along the plume centerline
- Expand the range of parameters in the pre-modeled scenarios
 - Enable the tool to be applied at more sites

Tool Updates

Survey to Expand Applicability

Proudly Operated by Battelle Since 1965

Parameter Expansion

Parameter	Evaluation Points as the Basis for Interpolation						
Residual Moisture Saturation		0.05	0.3	0.55	0.75		
Source Thickness Ratio		0.1	0.25	0.5	0.75		
Vadose Zone Thickness	3	10	30	60	110	150	
Source Area (m²)		100	400	900	2,500	10,000	
Groundwater Velocity (m/day)		0.005	0.03	0.3	1		
Relative Source Position		0.1	1	10	50		

~5,000 Simulations required to extend parameter ranges to the values in red

VZT

Ground-Truthing

- ► For sites with pseudo steady-state conditions compare model results to measured values at specific locations
 - Consider uncertainty ranges

Case Study: Hanford Site Conceptual Model

22

Case Study: Hanford Site Parameters

DOE 2014, 2016

Case Study: Decision Logic

DOE 2014, 2016

Case Study: Results

- Site provided SVE data according to the decision logic and obtained approval from regulators to terminate the SVE system
 - Approval was based on site data and transport analysis showing that no additional SVE was needed to meet the groundwater protection objective
 - Vapor intrusion was not an issue for this site

References – Journal Articles

- Brusseau, M.L., K.C. Carroll, M.J. Truex, and D.J. Becker. 2013. "Characterization and Remediation of Chlorinated Volatile Organic Contaminants in the Vadose Zone: An Overview of Issues and Approaches." Vadose Zone J., 12(4): doi:10.2136/vzj2012.0137
- Brusseau, M.L., V.J. Rohay, and M.J. Truex. 2010. "Analysis of soil vapor extraction data to evaluate mass-transfer constraints and estimate mass flux." Ground Water Monitoring and Remediation, 30(3):57-64.
- Carroll, K.C., M.J. Truex, M.L. Brusseau, K.R. Parker, R.D. Mackley, and V.J. Rohay. 2013. "Characterization of Persistent Volatile Contaminant Sources in the Vadose Zone." *Ground Water Monitoring and Remediation*, 33:68-84.
- ➤ Carroll, K.C., M. Oostrom, M.J. Truex, V.J. Rohay, and M.L. Brusseau. 2012. "Assessing Performance and Closure for Soil Vapor Extraction: Integrating Vapor Discharge and Impact to Groundwater Quality." *J. Contam. Hydrol.*, 128:71-82.
- Mainhagu, J., C. Morrison, M.J. Truex, M. Oostrom, and M.L. Brusseau. 2014. "Measuring spatial variability of vapor flux to characterize vadose-zone VOC sources: Flow-cell experiments." J. Contam. Hydrol., 167:32-43.
- Oostrom, M., M.J. Truex, A.K. Rice, C.D. Johnson, K.C. Carroll, D.J. Becker, and M.A. Simon. 2014. "Estimating the Impact of Vadose Zone Sources on Groundwater to Support Performance Assessment of Soil Vapor Extraction." Ground Water Monitoring and Remediation, 34(2): 71-84.
- Oostrom, M, M.J. Truex, G.D. Tartakovsky, and T.W. Wietsma. 2010. "Three-dimensional simulation of volatile organic compound mass flux from the vadose zone to groundwater." Groundwater Monitoring and Remediation, 30(3): 45-56.
- ► Truex, M.J., M. Oostrom, and M.L. Brusseau. 2009. "Estimating Persistent Mass Flux of Volatile Contaminants from the Vadose Zone to Groundwater." *Ground Water Monitoring and Remediation*, 29(2):63-72.

References – Reports

- ▶ Brusseau, M.L. 2015. *Use Of Mass-Flux Measurement and Vapor-Phase Tomography to Quantify Vadose-Zone Source Strength and Distribution*. ESTCP Project ER-201125, https://www.serdpestcp.org/Program-Areas/Environmental-Restoration/Contaminated-Groundwater/Emerging-Issues/ER-201125/ER-201125/%28language%29/eng-US.
- ▶ DOE. 2016. Endpoint Evaluation for the 200-PW-1 Operable Unit Soil Vapor Extraction System Operations. DOE/RL-2014-48 Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- ▶ DOE. 2014. Path Forward for Future 200-PW-1 Operable Unit Soil Vapor Extraction Operations. DOE/RL-2014-18 Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- ▶ Johnson, C.D., M.J. Truex, K.C. Carroll, M. Oostrom, and A.K. Rice. 2016. *Vapor Intrusion Estimation Tool For Unsaturated-Zone Contaminant Sources*. PNNL-23381, Revision 1, Pacific Northwest National Laboratory, Richland, WA.
- ▶ Truex, MJ, CD Johnson DJ Becker, MH Lee, and MJ Nimmons. 2015. Performance Assessment for Pump-and-Treat Closure or Transition. PNNL-24696, Pacific Northwest National Laboratory, Richland, WA.
- ► Truex, M.J., D.J. Becker, M.A. Simon, M. Oostrom, A.K. Rice, and C.D. Johnson. 2013. *Soil Vapor Extraction System Optimization, Transition, and Closure Guidance*. PNNL-21843, Pacific Northwest National Laboratory, Richland, WA.
- ► Truex, M.J., K.C. Carroll, V.J. Rohay, R.M. Mackley, and K.R. Parker. 2012. *Treatability Test Report:* Characterization of Vadose Zone Carbon Tetrachloride Source Strength Using Tomographic Methods at the 216-Z-9 Site. PNNL-21326, Pacific Northwest National Laboratory, Richland, WA.