Battelle

2018 Chlorinated Conference | April 8-12 | Palm Springs, CA

Working on the Railroad: Implementation of Sustainable Remediation at a Programmatic Level

Gerlinde Wolf, PE

SURF President, 2018

4/12/2018

NSRC Program Objectives

- ✓ Implement the Sustainable Remediation (SR) Program across NSRC's entire portfolio of remediation sites;
- ✓ Use a tiered approach that matches the complexity of the SR assessment with the size and complexity of the project;
- ✓ Provide the SR Guidance to all NSRC's consultants and require that they implement it at all sites at the appropriate tier; and
- ✓ Roll up the quantified metrics at year-end to demonstrate progress and allow for a quantitative summary of the SR program's impact.

Sustainable Remediation Program Development

- SR Priority Metrics for NSRC
 - Air Emissions (GHG, NO_x, SO_x, PM₁₀)
 - Water Consumption
 - Electricity Usage
 - Landfill Disposal (Hazardous & Non-Hazardous)
 - Topsoil Consumption
 - Cost
 - Lost Hours Injury
 - Percent Electricity from Renewable Sources
- These metrics go beyond the standard CERCLA evaluation criteria, and state requirements

Remedy Evaluation Criteria Under CERCLA

- ✓ Overall protection of human health and the environment;
- ✓ Compliance with [applicable or relevant and appropriate requirements (ARARs)];
- ✓ Long-term effectiveness and permanence;
- ✓ Reduction of toxicity, mobility, or volume;
- ✓ Short-term effectiveness:
- ✓ Implementability;
- ✓ Cost:
- ✓ State acceptance; and
- √ Community acceptance

Guidance Document

Project Types

Extremely Large, Costly, Complex

Complex Diesel
Fuel or Chlorinated
Volatile Organic
Compound (CVOC)
Release

Simple UST Release Site

NORFOLK SOUTHERN

Tier 1: Qualitative Assessment with BMPs

- Not intended to be used for evaluation of sustainability of remedial alternatives
- BMP Selection Process:
 - 1. BMP Opportunity Assessment
 - 2. BMP Selection
 - 3. BMP Implementation
 - 4. BMP documentation

– Think about: How has implementation of the selected BMPS positively impacted the sustainability of this project?

BMP Tool – AECOM GSRxTM

Management Practices Selected, by EPA Core Element

Tier 2: Quantitative Analysis - SiteWise™

- Widely used tool to calculate and compare environmental footprint of remedial alternatives
- Includes inputs for various remediation activities including:
 - Transportation
 - Equipment use
 - Waste handling
 - Raw materials
 - Well installation
- Considers life-cycle impacts from remedial actions including emissions due to manufacturing of materials consumed during remedial action
- SiteWiseTM reported metrics align with NSRC priority metrics.

SiteWise™ Outputs Examples – GHG Comparison

Total GHG emissions for Alternative F: 1,844 metrics tons

Total GHG emissions for Alternative F.1: 375 metric tons

8 AECOM

SR Program Implementation to Date

- To date the NSRC SR program has been implemented at 11 AECOM managed sites
 - 3 Tier 2 Assessments
 - 9 Tier 1 Assessments
- Project phases:
 - Investigation
 - Project Planning
 - Construction
 - Operation Maintenance and Monitoring
 - Post Construction Monitoring

Project Profile #1: Mixed Use Lease Property, SC

Assessment Level: Tier 1

Project Phase: Remedial Construction

Remedial Action: Shallow Excavation,

~ 22,800 tons of soil & debris

Project Sustainability Highlights:

- Waste segregation enabled cost savings and environmental benefits
 - Local disposal facility 23 miles
 - Local backfill materials 11 miles
- 12.46 tons of scrap metal recycled locally 8 miles
- 50 railroad ties taken to local railyard for beneficial reuse

Project Profile #2: Former Wood Processing Facility, SC

Management Practices Selected, by EPA Core Element

Assessment Level: Tier 1

Project Phase: Remedial Construction

Remedial Action: Pilot Testing, Interim Excavation,

~ 9,000 tons of soil & debris

Project Sustainability Highlights:

- Waste segregation minimized long distance disposal
- Local disposal facility (<20 miles) utilized when possible
- Minimize mature tree removal
 - Trees that were removed were chipped to create mulch based roadway onsite
- Estimated 1,680 miles saved by carpooling
- ~18 tons of scrap metal consolidated for local recycling

Project Profile #2: Former Wood Processing Facility, SC

- Phytoremediation pilot study for treatment of residual arsenic currently in progress
- Expected sustainability benefits:
 - o Improve aesthetics of area and neighborhood
 - o Provide beneficial environmental habitat

Project Profile #3: Former Fueling Area, GA

Assessment Level: Tier 1

Project Phase: Remedial Construction

Remedial Action: Excavation,

~ 22,800 tons of & debris

Materials Energy & Waste Core Elements Air 10 Land &

Ecosystems

Management Practices Selected, by EPA Core Element

Project Sustainability Highlights:

 Estimated 2,175 miles saved by carpooling and utilizing local labor and disposal sources

- 92 tons of material recycled (trees, metal, asphalt)
- Estimated \$3,700 project cost savings due to sustainability efforts and BMP implementation

Project Profile #3: Former Fueling Area, GA

Assessment Level: Tier 2

Project Phase: Planning, Alternative Assessment

Remedial Alternative 1: Discharging the treated water to the POTW, via above ground piping, to a manhole approximately 200 feet from the excavation area.

Remedial Alternative 2: Transporting the treated water via vacuum trucks to the rail yard WWTP, located approximately 1.5 miles from the excavation area.

Remedial Alternatives	GHG Emissions	Total Energy Used	Total NO _x Emissions	Total SO _x Emissions	Total PM ₁₀ Emissions	Costing
	metric ton	ммвти	metric ton	metric ton	metric ton	\$
Treated Water to POTW	33.63	318.16	0.05	0.03	0.01	155,000
Treated Water to Onsite WWTP	254.50	1515.76	6.38	1.36	0.18	360,000

Lessons Learned

- Starting discussion early on with contractors, i.e. during the bid walk, sets up expectations and clearly shows SR program requirements
- Incorporation of sustainability into daily tailgate meetings keeps field staff engaged and focused
- Frequent discussion of sustainability goals during project status calls helps track progress and identify areas of improvement

- Field implementation of selected BMPs can sometimes be challenging
 - Recycling

Path Forward – Program Improvements

- Adopted use of subcontractor bid specifications for tracking of BMP implementation
 - Recognized shortcoming in BMP tracking during field work
 - Used GSRxTM Detail Report for field crew to record observations
- 2. Initiation of a subcontractor "scoring/tracking" system to keep track of contractor performance in relation to SR integration into their work
- 3. Development and implementation of a consistent metric tracking approach for Tier 1 Sites Field Checklist
 - Qualitative assessments still can have measurable benefits
 - Recycling
 - o Travel Miles Saved
 - ₁₆ o Beneficial Reuse of Materials
- o Idle Reduction Time
- Cost Savings

The Broader Perspective – Value of SR Programs

- Driving Factors in Program Development:
 - Corporate philosophies of sustainability and environmental stewardship
 - Desire for consistent approach for application of sustainability
 - Corporate sustainability reporting now widely practiced
- Many sustainability benefits are linked
 - Gaining efficiency often results in cost savings
 - Cost saving measures may lead to environmental and social benefits

References

Acknowledgements

- AECOM, 2016 NSRC Sustainable Remediation Program Guidance **Document**
- SURF:

http://www.sustainableremediation.org

- AECOM Project Team Members
- NSRC Project Managers
 - Scott Pittenger
 - Steven Aufdenkampe

Battelle

2018 Chlorinated Conference | April 8-12 | Palm Springs, CA

Thank You!

Gerlinde Wolf, AECOM 518-951-2370 gerlinde.wolf@aecom.com

Scott Pittenger, NSRC 404-582-4236 scott.pittenger@nscorp.com