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Plume Persistence

 Uranium does not degrade like organic chemicals; thus, 
decreasing uranium concentrations in groundwater to below 
standards relies on:
• Active remediation

 Extraction and treatment

 Permanently fix on the solid phase

• Natural flushing (monitored natural attenuation)

 Past decisions relied on transport modeling to provide 
predictions of uranium concentrations through space and time

 Plume persistence 
• Initial estimates predicted lower groundwater uranium 

concentrations than what are occurring 
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Uranium Ore-Processing Sites
Past Estimates of Natural Flushing
 Tailings have been removed, assumed source removed
 Uranium plume in alluvial sands and gravels, assumed limited 

attenuation – Kd approach
 Rifle, Grand Junction, and Naturita, CO; Riverton, WY; etc.
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Actual Data Compared to Model Predictions
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New Data (20+ Years of Hindsight)

 Natural flushing not occurring as previously modeled
• Persistent secondary sources

 Solid-phase uranium sources not accounted for in prior 
modeling:
a) Precipitates with associated uranium below the former 

tailings
b) Evaporites above the water table due to plume wicking
c) Organic zones near the river
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Grand Junction, Colorado, Site
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Three Focus 
Areas for 
Tracer Testing
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Gypsum below water 
table (column 
test from here)

Evaporites in the 
unsaturated zone

Naturally reduced 
zone (NRZ) 

with organics
Former uranium pilot mill

Former tailings 
deposition area



Column Test Results and Modeling
 Key processes: dual porosity, desorption, and 

mineral dissolution
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Tracer Testing Objectives

 Evaluation of tracer testing methods to better understand 
uranium release and transport processes at the field scale
• Groundwater flow direction and velocity 
• Vertical stratification
• Mineral precipitation/dissolution
• Dispersion and dual porosity
• Adsorption/desorption
• Unsaturated zone influence

 Compare field-scale uranium release and transport 
parameters with those derived from column tests for use in 
updating site conceptual models and transport models
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Contaminated 
Area
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Borehole Dilution

Replace well 
bore water with 
deionized water 
and then track 
conductance 

change through 
time

Well bore water

Deionized water

Fluorescein 
Dye

Groundwater Flow
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11

1.5 ft/day linear velocity
Flow direction directly west

y = -2.16E-03x + 7.33
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Push-Pull (single well injection and extraction)
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Contaminated 
Area

Contaminated 
Area

“Push” river water with 
tracers, followed by river 
water without tracers, let 

injected water move with the 
natural gradient. Then “pull” 

the injected water back.



Dispersion and Sorption Influence

 Five-hour injection, 45-hour chase, two-hour drift
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Dual Porosity Influence

 Five-hour injection, 45-hour chase, two-hour drift

14

Tracer 3
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Push-Pull Results
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Cross Hole

16

Injection well Pumping well

Use borehole 
dilution results to 

align injection 
well with 

groundwater flow 
direction

Theoretical Results
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Example Data (Injecting Cl, SO4, and U)
Smith-Ranch Highland In Situ Recovery Site
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Inferred flow direction

UZ 
Tracers

Test dissolution 
(infiltration event) of 
evaporites that have 

greater uranium 
concentration 

UZ Tracers
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Summary and Conclusions
 Goal: improved predictions of uranium fate and transport
 Column testing and modeling indicate need for dual 

porosity, sorption, and mineral dissolution processes
 Multiple tracer testing approaches are being used to test 

multiple processes at the field scale
 Still need to compare laboratory and field-scale results 
 Result: revised conceptual and numerical models with new 

predictions of uranium fate and transport for updated 
decision making on site management 

 Approach is applicable at other sites, but first demonstrate 
use of techniques at  the Grand Junction site
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