

Proudly Operated by Battelle Since 1965

Field Test of Vapor-Phase Ammonia Injection for Vadose Zone Remediation of Uranium

MICHAEL TRUEX¹, CHRIS STRICKLAND¹, JIM SZECSODY¹, GLEN CHRONISTER², AND PATRICK BAYNES²

¹ Pacific Northwest National Laboratory
² CH2M Hill Plateau Remediation Company

Introduction

- Large inventory of contaminants in the vadose zone at Hanford: concern as a potential source of future groundwater contamination
- Efforts underway to develop in situ vadose zone remediation for radionuclide contaminants
- Uranium is of concern because of its large inventory and mobility

Introduction

Investigating geochemical manipulation to change the subsurface conditions in a way that slows downward migration of the contaminants

Focus of efforts is use of amendments delivered in the gas-phase

- Development from concept to field application
 - Concept: Introduction of caustic waste fluids to the subsurface dissolves part of the sediment. Subsequent precipitation can bind or coat contaminants and render them less mobile.

Ammonia Treatment

Ammonia can be delivered in the gas phase and creates caustic conditions in the pore water.

Sequential extraction method

- Groundwater (mobile in pore water)
- Ion exchange (mobile, sorbed)
- PH 5 acetate (moderately mobile, carbonate rind)
- PH 2.3 acetic acid for 1 week (slow release, carbonate)
- 8M Nitric acid at 95C (functionally immobile, total)

Sequential Extraction and Leaching Results

Partitioning is reasonably well predicted by Henry's Law such that field design calculations can be developed

Field Design

Ammonia Delivery

Ammonia injected into a cube of sediment

Treatment of Low Permeability Zones

Plan view of packing for a large soil column test (10 cm length)

Vadose Zone Considerations

Diffusion of a 0.1 M ammonia pore-water concentration front (pH > 11) from a 5% ammonia gas boundary

- 5 cm/week, and 8.7% moisture silty sand
- 3.4 cm/week for 13% moisture silty sand

Laboratory Injection

Proudly Operated by Battelle Since 1965

Laboratory Injection

Proudly Operated by Battelle Since 1965

Injection across permeability contrasts showed relatively even movement of the injection front.

Post injection analysis showed ammonia distribution into fine sand and silt lenses

Test Location: 216-U-8 Crib

Uranium Distribution and Target Test Zone at the 216-U-8 Site

Site Monitoring

Ground Surface Ammonia Monitoring

- Ammonia trailer
- All piping joints
- Perimeter/area monitors at ground surface
- Subsurface gas sampling ports

Injection Monitoring

- Electrical Resistivity
- Temperature
- Subsurface gas samples

Surface Electrical Resistivity Tomography

Proudly Operated by Battelle Since 1965

Subsurface Monitoring

Cross-hole ERT

Monitoring for lateral and vertical movement

- Determine design and operational parameters
- Demonstrate field-scale treatment
- Demonstrate field-scale equipment
- Collect sufficient information to support consideration of ammonia treatment for a feasibility study

Test Design Issues

Ammonia stock is a liquefied gas

- Pressure depends on temperature (controlled)
- Cooling with conversion to gas
- Mass-flow controller for gas-phase mixing with nitrogen gas
- Need anhydrous conditions
 - Ammonia strongly partitions into water
 - Desiccation will occur near injection well
- Ammonia smell recognized well below hazard level
 - Good warning
 - Personnel concerns

Test Design Issues

- Equipment compatibility with ammonia
- Ammonia "reaction" time
 - Pore water concentrations drop over first week or so after injection ceases
 - Temporary interruptions of injection
 - Hours to a few days no impact
 - Week may "re-treat" areas already treated
 - Full reaction time for precipitation is months to a year with longer as better
 - In vadose zone "reaction time" is not critical because transport rate is slow
- Ammonia will follow carrier gas flow pattern but be slowed and diffuse more due to interaction with water

Still need to consider short-circuit flow paths

Test Status

- Field equipment installed and ready for injection
- Administrative hold to address concerns for use of ammonia
 - Hazards review board
 - Concern for surrounding activities
 - Timing of activity

Conclusions

- Vadose zone remediation is aimed at decreasing the contaminant flux from the vadose zone to the groundwater
- Geochemical manipulation with ammonia creates lowsolubility precipitates that are effective in reducing uranium mobility
 - Not sensitive to re-oxidation
 - Favorable delivery properties for the vadose zone
- Use of ammonia must consider hazards and appropriate controls

References

- Department of Energy. 2008. "Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau." DOE/RL-2007-56, Revision 0, U.S. DOE Richland Office, Richland, WA.
- Department of Energy. 2015. "Field Test Plan for the Uranium Sequestration Pilot Test." DOE/RL-2010-87, Draft B, U.S. DOE Richland Office, Richland, WA.
- Szecsody, JE, MJ Truex, L Zhong, NP Qafoku, MD Williams, JP McKinley, CT Resch, JL Phillips, D Faurie, and J Bargar. 2010a. Remediation of Uranium in the Hanford Vadose Zone Using Ammonia Gas: FY10 Laboratory-Scale Experiments. PNNL-20004, Pacific Northwest National Laboratory, Richland, WA.
- Szecsody, JE, MJ Truex, L Zhong, MD Williams, and CT Resch. 2010b. Remediation of Uranium in the Hanford Vadose Zone Using Gas-Transported Reactants: Laboratory-Scale Experiments. PNNL-18879, Pacific Northwest National Laboratory, Richland, WA.
- Szecsody, J.E., M.J. Truex, L. Zhong, T.C. Johnson, N.P. Qafoku, M.D. Williams, J.W. Greenwood, E.L. Wallin, J.D. Bargar, and D.K. Faurie. 2012. Geochemical and Geophysical Changes During NH3 Gas Treatment of Vadose Zone Sediments for Uranium Remediation. *Vadose Zone J.* 11(4) doi: 10.2136/vzj2011.0158.
- Truex, MJ, JE Szecsody, L Zhong, JN Thomle, and TC Johnson. 2014. Scale-Up Information for Gas-Phase Ammonia Treatment of Uranium in the Vadose Zone at the Hanford Site Central Plateau. PNNL-23699, Pacific Northwest National Laboratory, Richland, Washington.
- Zhong L, JE Szecsody, MJ Truex, and MD Williams. 2014. Ammonia Gas Transport and Reactions in Unsaturated Sediments: Implications for Use as an Amendment to Immobilize Inorganic Contaminants. *Journal of Hazardous Materials*. 289:118–129. doi. 10.1016/j.jhazmat.2015.02.025.