Site Characterization and Remedial Design for Surface Impoundments Containing Technologically Enhanced Naturally Occurring Radioactive Material (TENORM)

Jeff Wallace, Peter Zawislanski, Christopher Jones
Terraphase Engineering Inc.

Tracy Ikenberry
NV5

INTRODUCTION

- TENORM is an emerging regulatory issue with evolving requirements
- It affects several categories of large-volume manufacturing by-products and industrial waste
- Project characterized one type of manufacturing waste for the purpose of facility decommissioning and closure
 - Showed importance of potentially underappreciated analytical issue that can significantly impact the results and the dose
- A radiological site characterization was completed to inform closure strategy
- Dose modeling showed that modest and low-cost remedy will meet the local regulatory standard; however, O&M will need to be performed in perpetuity

NORM/TENORM BASICS

Naturally Occurring Radioactive Material – NORM

- Examples of NORM: bauxite (aluminum ore), phosphate ore, granite rock, ceramic products, radon, some foods
- NORM is exempt from regulation...for the most part (exception: drinking water MCLs)

Technologically Enhanced NORM - TENORM

- Primarily a byproduct of processing mineral ores containing NORM
- Others: oil drilling waste, fly ash for coal plants, water treatment sludge
- Generally a waste material
- Exempt from Federal regulation but regulated in some states

RADIOACTIVE WASTE REGULATORY OVERSIGHT

NRC

 Regulates the civilian use of civilian radioactive materials: power plants, mining, industrial, academic and medical use.

Agreement States

- Regulate materials within their borders (not HLW)
- Approval to administer licensing, inspection, etc.
- Most states are Agreement States

• TENORM is regulated by the States

- ➤ Approximately 13 states have TENORM-specific regulations, although what aspect is regulated varies
- Several states are currently developing new regulations

WHEN/WHERE IS TENORM A PROBLEM?

"That depends on where you find it and when, where, and whom you talk to!"

"State Regulations and Policies for Control of Naturally-Occurring and Accelerator Produced Radioactive Materials (NARM) and Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM)"

(Association of State and Territorial Solid Waste Management Officials' [ASTSWMO's] Radiation Focus Group, December 2014)

http://www.astswmo.org/Files/Policies and Publications/Materials Management/ State%20Statutes%20and%20Regulations%20on%20TENORM%20Final%20Dec2014.pdf

ALUM PROCESS RESIDUE (APR)

- Uses of aluminum sulfate ("alum")
 - Water treatment coagulant
 - Paper and pulp manufacturing
- Source material is bauxite
 - NORM
 - Composition varies, including radionuclides
- Large-volume waste slurry ("APR")
 - High aluminum and silica content
 - Usually buffered with sodium hydroxide prior to disposal
 - pH can vary widely depending on buffering
 - Historically disposed in unlined "mud ponds" or low-lying areas
 - APR is not red mud

ALUM PRODUCTION PROCESS

 $2AI(OH)_3 + 3H_2SO_4 \rightarrow AI_2(SO_4)_3 + 6H_2O$

+/- NaOH buffer

BAUXITE (NORM) VS APR (TENORM)

Bauxite

- Uranium (²³⁸U) and decay products
- Thorium (232Th) and decay products
- Potassium (⁴⁰K)
- 232Th range: 0.6 28 pCi/g; avg: 6.2 pCi/g
- ²³⁸U range: 0.8 13 pCi/g; avg: 4.1 pCi/g

(Von Philipsborn and Kuhnast 1992; FNCA 2005; Cooper 2005; IAEA 1996 Georgescu et al in IAEA 2005; Grant et al 2005; Abbady 2006; Adams & Richardson 1960)

APR

- Radionuclide concentrations generally higher
- Highest activity decay products:
 - ²³²Th range: 5 70 pCi/g
 - ²³⁸U range: 2 12 pCi/g
 - ²²⁸Ra range: 8 48 pCi/g

ONGOING TENORM INVESTIGATIONS

FORMER ALUM FACILITY

SITE INVESTIGATION

GOALS

- Radiological characterization
- Volume estimate, physical properties

APPROACH

Drilling: sampling/analytical

METHODS

- Field: track-mounted Geoprobe drilling rig, isolation barrier; gamma walk-over survey
- Analytical: Standard EML HASL-300

CHALLENGES

- Rigorous health-and-safety requirements
- Representative radiological data!

FIELD WORK CHALLENGES

ANALYTICAL CHALLENGES

• Standard methods based on DOE Environmental Measurements Laboratory procedures manual HASL-300.

https://www.orau.org/PTP/PTP%20Library/library/DOE/eml/hasl300/HASL300TOC.htm

- Laboratory methods do not specify sample preparation method lab's will use their SOPs unless instructed otherwise.
- Initial testing sample preparation by finely grinding the material in a ball mill followed by an acid leaching procedure.
- Ran subset duplicates (different lab) using alternate more aggressive persulfate fusion preparation.
- Significant difference in results between the two preparation procedures!

EFFECT OF SAMPLE PREPARATION ON RESULTS

Comparison indicated that for APR

- Concentrations after the fusion process about one order of magnitude higher
- Grind and acid-rinse method likely only extracted constituents from the surface of the sample particles
- The fusion process liberated constituents in the mineral matrix of the material
- Background in the range of 1 to 2 pCi/g for both radionuclides

REMEDIAL OPTIONS

- Clean Closure Excavation and offsite landfill disposal
- Beneficial reuse Excavation and offsite transportation to cement kiln, site restoration
- Closure in place Isolation cap

PRIMARY CLOSURE REQUIREMENTS

- Unrestricted Use
 - Residual radioactivity reduced to ALARA
 - Dose <25 mrem/year to critical group
- Restricted Use
 - ALARA
 - Institutional controls to achieve dose <25 mrem/year
 - Dose less that 100 mrem/year without institutional controls
 - Numerous additional criteria

Note: Average annual dose from natural sources = 310 mrems/year

https://www.nrc.gov/reading-rm/doc-collections/fact-sheets/bio-effects-radiation.html

RESRAD DOSE MODELING

- RESidual RADioactivity (RESRAD) a set of computer codes used to predict future dose (developed by Argonne National Laboratory)
- Standard model to guide decommissioning and waste management
- Numerous environmental pathways may be considered (direct exposure, inhalation of particulates and radon, and ingestion of plant foods, etc.)
- Calculates the annual radiation dose from residual radionuclides.
- Useful for analyzing scenarios to aid in remedial design, e.g., cap properties, thickness

RESRAD MODEL: SOIL COVER THICKNESS SENSITIVITY ANALYSIS RESTRICTED USE SCENARIO

RESRAD MODEL: UNRESTRICTED USE SCENARIO, NO SOIL COVER

RESRAD MODELING CONCLUSIONS

- Without capping, dose exceeds regulatory criterion
- Thin (6 inch) soil cover adequate to reduce dose below regulatory criteria under restricted use (land use scenario => pathways => exposure)
- Modeling default duration is 1,000 years; cap maintenance required in perpetuity

WRAP UP

- Regulatory environment
 - Requirements vary by jurisdiction and are evolving (or not)
 - Vague and varied agency positions, policy lacking
 - Likely affect remedial options
 - Multi-agency oversight in some jurisdictions
- Public involvement
 - Radiological risk likely not well understood by community
 - Local opposition may effect remedial strategy
- O&M in perpetuity for in-place closure alternative
- TENORM can be a "re-opener" at toxics cleanup sites; potential significant cost increases
 - Work delays, slower approvals, additional H&S requirements
 - Revisions to remedial planning documents

Thank You!

Jeff Wallace, RG, LHg <u>jeff.wallace@terraphase.com</u> Portland, Oregon

www.terraphase.com

