Innovative Design Approach for Mitigating Landfill Gas: A Landfill Post-Closure Mixed-Use Development Case Study

<u>Presenter:</u> Omer Uppal, Senior Project Manager – Remediation Technology Langan Engineering (ouppal@langan.com)

<u>Co-Authors</u>: Matthew Ambrusch, PE; Nadira Najib; Jeff Ludlow, PG; Chris Glenn, PE; Stewart Abrams, PE; and Imtiyaz Khan (Langan)

<u>Acknowledgements:</u> Greg Corcoran, PE (Geosyntec, San Francisco, CA, USA); and Murray Fredlund (SoilVision Systems, Ltd, Saskatoon, SK, Canada)

LANGAN

Outline

- Site Background
- Pilot Testing
- Pneumatic Modeling
- Design Considerations
- Landfill Gas Mitigation Strategy
- Conceptual Design

Site Background

- Landfill operated from 1960s to 1990s
- Accepted 5.5 millions tons of refuse over 240 acres

Site Background

- Mixed-use Development
 Mega Project
 - Largest private development project in Silicon Valley's history
- Environmental and Geotechnical Challenges
 - Landfill gas and VOCs mitigation
 - Design for significant settlement and seismic risks
 - Construction to safely operate during phased development
- Concentrations of methane up to 50% by volume (10 X LEL)

Site Background

Proposed multi-building, mixed-use development

Geologic Section

LANGAN

LANGAN

Testing Types:

- Baseline
- Isolated
- Anisotropy
- Rebound

Parameters of Interest:

- Extraction Flow Rate
- Vacuum Propagation
- LFG Quality

WHY DO IT?

- Determine Existing Conditions
- Simulate Proposed Conditions
 - Structural Elements
 - Refuse Settlement
 - LFG Generation Rate
- Better Predict System Performance
- Cost-Effective and Reliable Remediation Systems
- Saves Time and Money!

OBJECTIVE:

Predict system performance under current and future conditions

Model Outputs:

- Radius of Influence
- Number and Spacing of LFG Extraction Wells
- Anisotropic Conditions
- Air Intrinsic Permeability
- Vacuum Propagation
- Pore Volume Exchanges
- Design LFG extraction flow rates and vacuum
- Balance LFG extraction with LFG generation

(MDFIT[™] M. Marley)

Air Intrinsic Permeability Estimation:

 K_R = 8.08E-07 cm² – Refuse, Lateral Direction K_Z = 2.18E-07 cm² – Refuse, Vertical Direction K_C = 4.67E-11 cm² – Upper Clay Cap K_N = 9.67E-09 cm² – Underlying Native Soil

LANGAN

LANGAN

LANGAN

Modeling Sensitivity Analyses

KEY MODELING CONSIDERATIONS:

- Refuse Settlement
- Seismic Activity
- Barometric Pressure Fluctuations
- Under Slab Void Space
- Reduced LFG Generation Rates
- Proposed Development Features
- Moisture Content
- Screen Length
- Oxygen Intrusion

Barometric Pressure Influence

Screen Length Influence

More uniform vertical distribution with longer screens Relatively thin unsaturated refuse layer = shorter screens better to reduce air intrusion

Key Design Considerations

- LFG Generation Rate
- Fire Hazards
- Seismic Hazards
- Refuse Settlement
- Development of Void Space Under Slab
- Corrosivity

LFG Generation Rate

- Methane is colorless and odorless
- Methane Lower Explosive Limit [LEL] (5% by volume)
- LFG Methane Content at the Site (40-50% by volume)
- 1.25% by volume Methane = 25% LEL (Triggers Active Venting Requirements)

Seismic Hazards

Settlement

LANGAN

Settlement...

LFG Collection Wells Outside the Structural Platform Area

(5) HDPE SLIP JOINT DETAIL - TELESCOPING WELL (NOT TO SCALE)

Settlement...

LFG Collection Wells Within the Structural Platform Area
Outside the Building Footprints

LFG Collection Wells Within the Structural Platform Area Inside the Building Footprints

LANGAN

Void Space LFG Control

Proposed Cell-Crete Liquid Concrete Injection

INSERT A - TYPICAL PIPE HANGER ANCHORED INTO STRUCTURAL SLAB (NOT TO SCALE)

Corrosivity

- Sulfur-based gases (hydrogen sulfide) are microbially converted to sulfuric acid (H₂SO₄).
- Low pH
- Hydrogen sulfide and Fe results in the formatio of iron sulfide film.
- Construction Materials Selection
 - o HDPE
 - o PVC
 - o Stainless Steel
 - Corrosion Resistant Coatings

Design Summary

- LFG collection wells
 - 59 telescoping vertical wells

100 to 150 feet radius of influence 0.75 – 4.25 scfm flow 0.05 – 3 in WC vacuum at well

- Fully Explosion-Proof Blower(s)
- Enclosed Flare and Micro-Turbines
- Condensate Knockout Pots

Structural Platform

Operations Strategy

Project Status

Current Land Use

Planned Future Development

Omer Uppal ouppal@langan.com