Modifying an Existing Sub-Slab Methane Mitigation System at Redeveloped Landfill Site after Years of Settlement

Jessica Schaettle, Christopher Glenn, Jeffrey F. Ludlow

Outline

Site Background

Objectives

Approach

Results

Site Background - Location

- Bayshore Technology Park
- Redwood City, California
- 45 acres
- 20 office buildings

Site Background - History

- Tidal marshlands until 1910
- Westport Landfill, 1948 1970, unlined
 - Municipal solid waste
 - 650,000 cubic yards of fill material
- 20 office buildings constructed in late 1990's and early 2000's
 - LFG control and protection system

Site Background – Existing System

- Passive system
 - Sub-slab membrane
 - Lateral vent piping
 - Exhaust risers with wind-assisted turbines
- Sub-slab area broken into six sextants by utility trench

Site Background - Problem

- Refuse degradation
- Methanogenesis
- Site settlement
 - Non-uniform
 - 3.5-5 feet
- Cell-crete placed for structural stability
- Methane intrusion in utility trench

Note: Phase duration time varies with landfill conditions Source: EPA 1997

Approach - Goals

- Goals
 - Determine pneumatic connectivity of sub-slab space
 - Induce vacuum in sub-slab space
 - Decrease methane concentration in sub-slab space and utility trench

Approach - Testing

- Design Parameter Test
 - Modify existing exhaust riser
 - Attach extraction blower
 - Monitor methane and vacuum via 1-inch observation ports
 - Review data to design permanent system

Approach – Design, Building 1

- Different from Building 1
 - Negligible vacuum effect
 - Greater decrease in methane concentration
- Performed two Design Parameter Tests
- Temporal and spatial variations in methane beneath building

Table 1
Extended Design Parameter Test Summary
1300 Island Drive

November 2017

Location	Baseline Methane (% by volume)	Methane After Extraction ¹ (% by volume)	% Decrease During Extraction	Final Methane ² (% by volume)	Estimated Methane Generation Rate ³ (g CH ₄ /m ³ air/hour)	Estimated Methane Generation Rate (Ib CH ₄ /day)
OP-1	26.2	4.25	83.8	15.50	3.06	10.12
OP-2	32.5	0.1	99.7	3.95	0.71	0.46
OP-3	40.5	4.25	89.5	6.82	0.74	1.13
OP-4	35.1	11.7	66.7	13	*	*
OP-5	35.6	2.5	93.0	8.2	1.78	0.89
OP-6	42.5	0.35	99.2	21.7	6.48	7.4
Total	n/a	n/a	n/a	n/a	n/a	20.00
Average	35.4	3.9	88.6	11.5		

- Considered multiple alternatives due to uncertainty in testing results
- Chose Alternative 2
 - Extract from all six subslab sextants
 - Flow control valves
 - Six sub-slab methane monitors

No inlet vents

Results – Building 1

- Functioning System
 - System optimization
 - Successfully decreases methane concentrations
 - No building alarms
- Key Lessons
 - Blower cycling frequency
 - Conduit seals
 - Sensor proximity to extraction point
 - Sub-slab moisture level
 - Moisture traps for methane sensors

Results – Building 1

Results – Building 2

- Design is going through City and County review
- Incorporated key lessons from Building 1
 - Moisture protection for sensors
 - Distance between sensor and extraction point
 - Better blower access
- Will undergo optimization period
 - Regulate extraction from each sextant to minimize methane and blower cycling

Lessons Learned recognize mistakes observe what works document them share them

Questions

