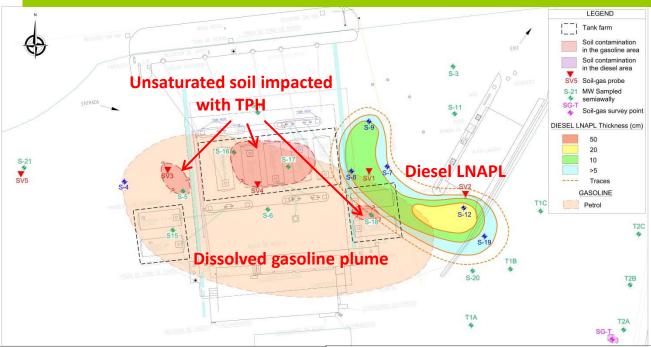

Site

Natural Source Zone Depletion Investigation of a Paved UST Site in Spain


Robert E. Sweeney, Etna, CA; G. Todd Ririe, Chino Hills, CA; Amaya
Sayas and Manuel Mart, AECOM Madrid, Spain; Birgitta Beuthe, BP London, UK and
Luis

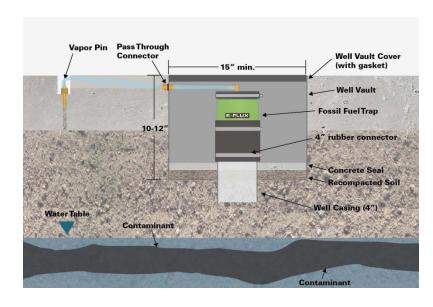
Barreales, BP Madrid, Spain May 2018

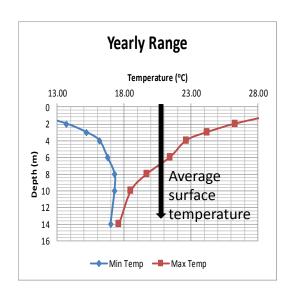
Site Description and Objectives

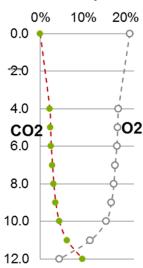
Site Description

- Former urban Petrol Station
- Currently dismantled
- In service from 1966 to 2009
- 9 underground tanks
- Entire surface is asphalt pavement
- Perched water at about 10 m
- Diesel LNAPL plume < 0.5 m thick
- Gasoline dissolved groundwater plume

Objectives of study

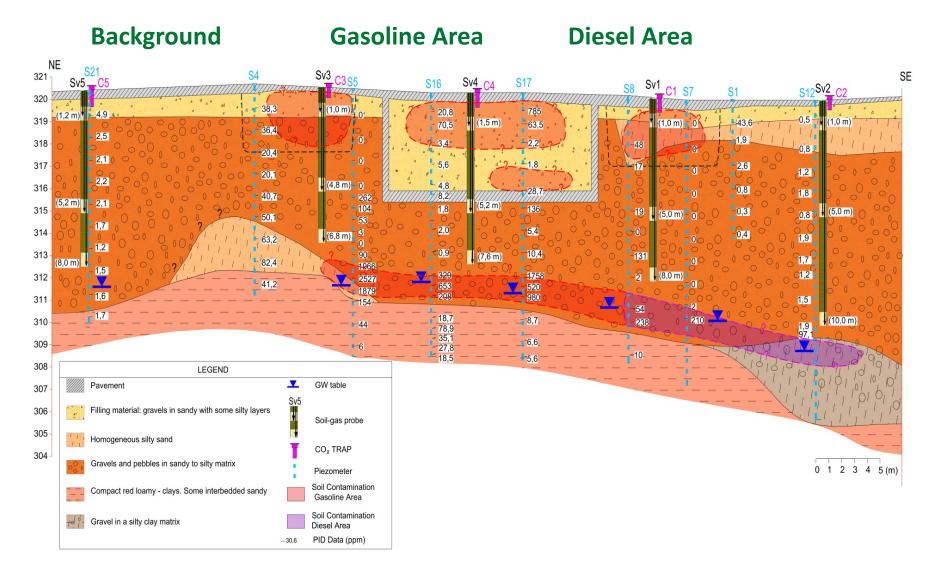

- Test recommended methods to quantify the NSZD rate at large LNAPL sites (API, 2017)
 - Gradient & CO₂ Efflux trap (surface cover)
 - Emerging methods -Temperature and ¹⁴C of CO₂
 - New field methods Monitoring well vapor analysis (Sweeney and Ririe, 2017), and shallow soil gas sampling


Topics for Discussion

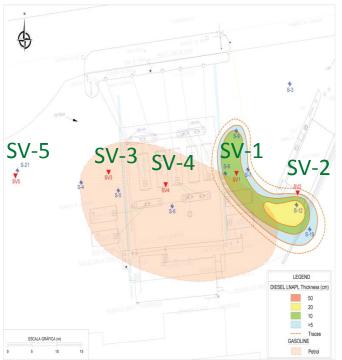


- First set of CO₂ Efflux Trap results
 - Background and 2 traps each in diesel and gasoline areas
- Comparison between Soil Gas probes and MW vapor results
 - Multi-depth sampling of vapor from screened intervals in monitoring wells
 - Baseline and first round results soil gas profiles background/diesel location
- Temperature model and preliminary results
 - Modifications to basic temperature model
 - Use of temperature monitoring data to determine the heat conductance of vadose zone

MW Vapor

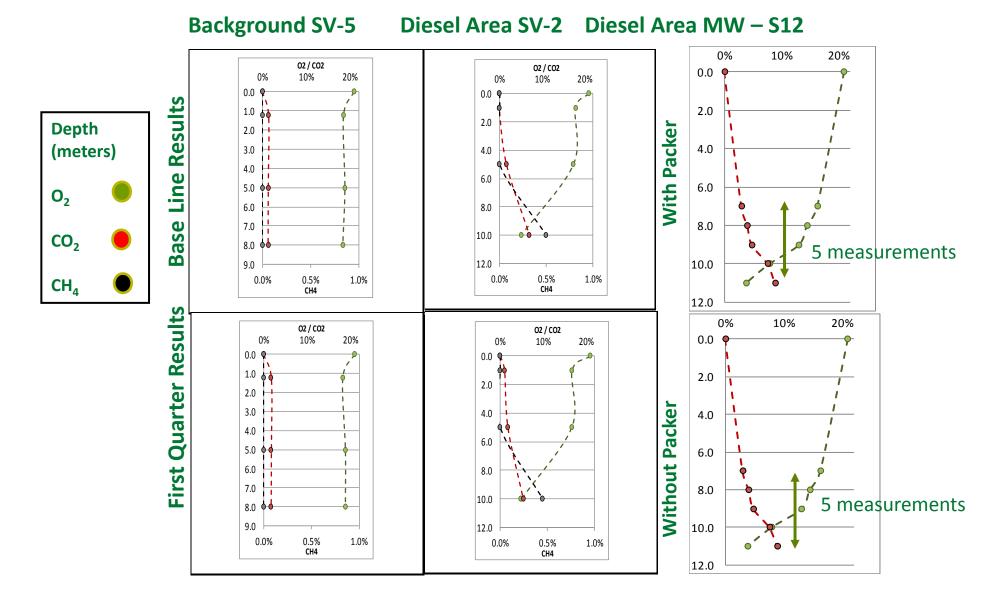


Sample locations: CO₂/O₂ Gradient and CO₂ Efflux Methods



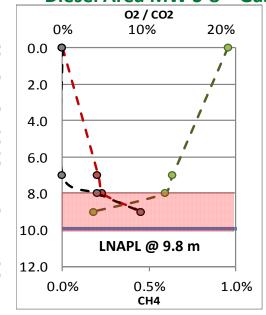
NSZD rate from CO₂ Efflux results

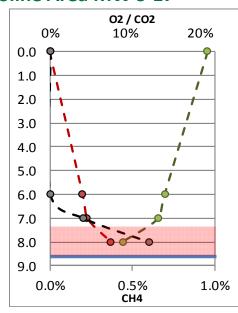
CO2 Efflux Trap Location	NSZD rate Gallons per acre- year (gpay)	Contamination Type
SV1/C1	74	Diesel
SV2/C2	106	Diesel
SV3/C3	8,113	Gasoline
	13,663	
SV4/C4		Gasoline
SV5/C5	2,006	Background


Traps in place for about 8 day Fossil CO₂ flux determined after subtraction of 'trip blank'

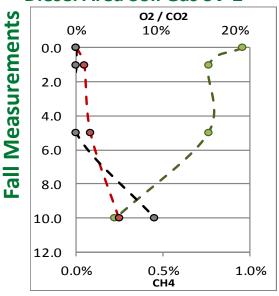
- Calculated low efflux of CO₂ at diesel trap sites near SV-1 and SV-2, close to blank correction
- High efflux of CO₂ at gasoline sites SV-3 and SV-4 likely related to unsaturated soil contamination
- Unexplained elevated Efflux of CO₂ at background site SV-5 lateral transport or other interference?

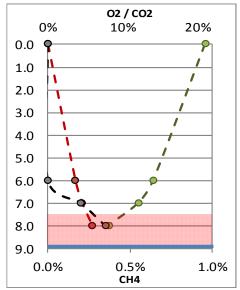
Soil Gas Probes and Monitoring Well (screened interval) Profiles





NSZD from CO₂/O₂ Gradient




co₂

Diesel Area Soil Gas SV-2

Gasoline Area MW S-17

Observations

Two diffusivity layers in vadose zone

- Fluxes equal thru layers
- Above gradient change
- Below gradient change

NSZD rate

Above gradient change

Diesel Area (CO₂ gradient)

- S-8 = 292 gpay
- SV-2 = 252 gpay
 Diesel Area (O₂ gradient)
- S-8 = 409 gpay
- SV-2 = 620 gpay

Gasoline Area (CO₂ gradient)

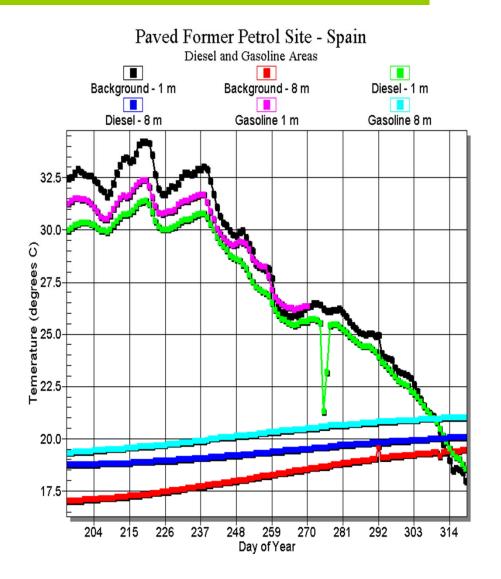
- S-17 (summer) = 207 gpay
- S-17 (fall) = 307 gpay

Gasoline Area (O₂ gradient)

- S-17 (summer) = 174 gpay
- S-17 (fall) = 527 gpay

NSZD from Temperature Monitoring

Temperatures sensors in monitoring wells


- Placed at 1 meter intervals
- Measurements every hour
- Plotted 11 PM results each day
- Readings at 0.1 degrees C

Results plotted vs Time

- Largest changes near surface
- At 1 m depth atmospheric influence should be equal at each site unless 'surface cover' variable

NSZD rate:

Using temperature difference at 8m depth between background and impacted area as thermal gradient (0.5 - 2° C/8 m) then rate = 67 – 268 gpay

Summary and Conclusions

CO₂Efflux Traps

- Documented gasoline in shallow soils near tanks/pumps
- Low CO₂ efflux (74 104 gpay) at diesel sites
- High CO₂ efflux at background site is unexplained

Use of Soil Gas Probes and Monitoring Well Vapor for Gradient Approach

- Baseline and first round results non-linear O₂/CO₂ profiles at gasoline/diesel sites, implying that gas diffusivity changes with depth (due to lithology or moisture)
- Preliminary rates of NSZD relatively low (174 to 620 gpay)

Temperature Model and preliminary Monitoring Results

- Monitoring data used to determine thermal heat conductance = 1.2
 kJ/m-sec-K, consistent with site lithology
- Still have concern with variable temperature near the surface
- Using thermal anomaly at 8 meters, NSZD rate calculated as 67 –
 268 gpay

Overall: NSZD relatively low (< 1000gpay) consistent with weathered fuel, still effective for site remediation

