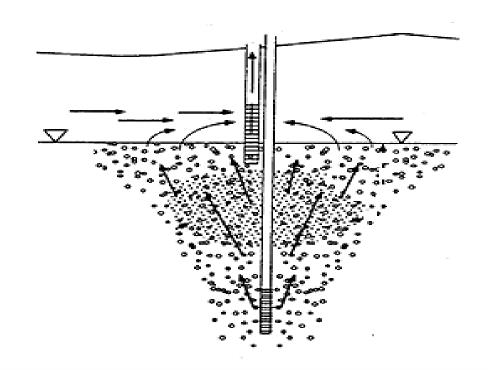
An Innovative Air Sparging Approach for Treatment of BTEX and VOCs

Presenters:

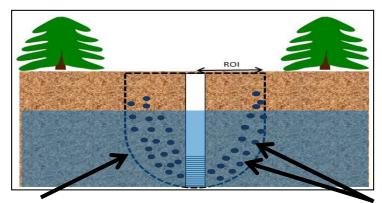

Matt Ambrusch – Langan Rob Gaupp – AWT

Project Team:

S. Ciambruschini, S. Abrams, O. Uppal, N. Najib and A. Quinn – Langan T. Russo – AWT

Presentation Outline

- What Really is Air Sparging?
- Site Background
- Pilot Test
- Pneumatic Modeling
- Results/Considerations
- Final Design
- Implementation



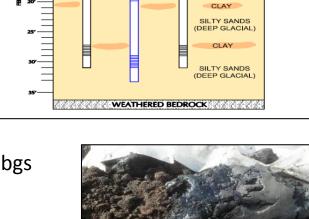
What Really Is Air Sparging

In order to **Design** and **Optimize**, you have to understand the fundamentals:

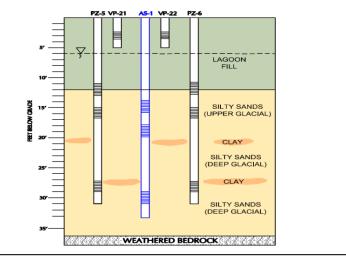
- Mass transfer from aqueous phase to vapor phase
 - Henry's Law
 - Vapor Pressure
- Design Variables
 - Contaminant(s) of Concern
 - Lithology
 - Groundwater Flow Rate
 - Air to Water Ratio
 - Temperature

Zone of Air Distribution

Air Channeling


LANGAN

Flow is Treatment, **NOT** Pressure

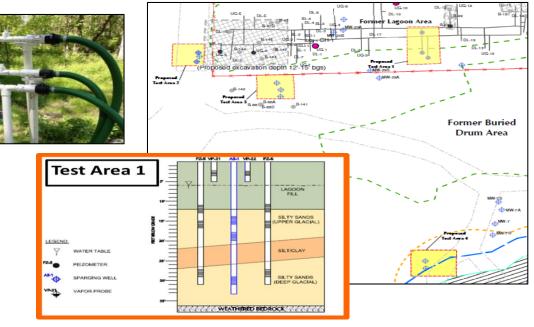

Site Background

- Former textile mill/pharmaceutical manufacturing plant
- Primary COCs :
 - Benzene up to 20,900 μ g/L
 - Phenol up to 12,800 μ g/L
 - Arsenic up to $31.2 \,\mu g/L$
- Geology
 - Fill layer
 - Alluvium layer
 - **Glacial Till layer**
- Hydrogeology
 - Groundwater table ranges approximately 1.5 to 6.5 feet bgs

Lagoon Waste!

LANGAN

Pilot Test


Testing Methods

- Point Permeability
- Radius of Influence
- Helium Tracer
- Biorespiration

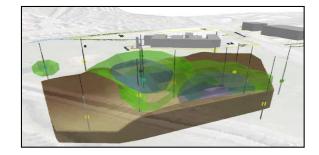
Parameters of Interest

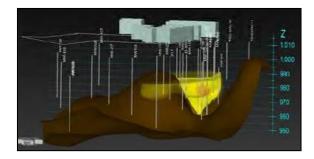
- Air Flow Rate
- Pressure
- Vacuum
- Contaminant Mass Removal Rate
- Anisotropy Vertical Profile of Pilot Test Network & Pressure Distribution

Vacuum – Flow Relationship!

LANGAN

Pilot Test

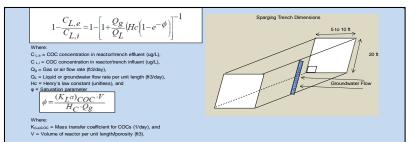

Signs of air sparging on the ground surface above which active sparging is occurring...

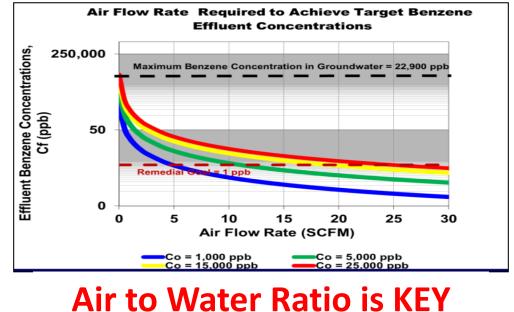

LANGAN

2018 Battelle Chlorinated Conference

Pneumatic Modeling – Why?

- Determine Existing Conditions
- Simulate Proposed Conditions
- Better Predict:
 - Air Flow in Complex Geologic Settings
 - System Performance
 - Compliance and Closure
- Cost-Effective and Reliable Remediation Systems
- Saves Time and Money!

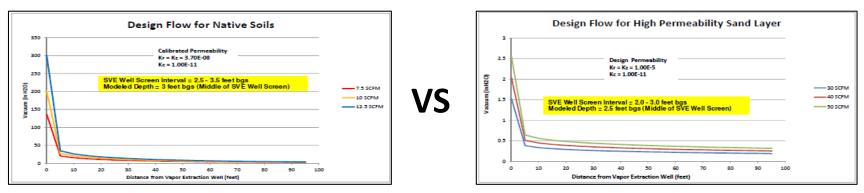




Pneumatic Modeling – Air Stripping

Input Parameters:

- Contaminant of Concern (i.e., Henry's Law Constant)
- Temperature
- Air Flow Rate
- Groundwater Flow Rate
- # of Air Sparge Rows



Pneumatic Modeling – Vapor Capture

Modeling Procedure

2018 Battelle Chlorinated Conference

- Step 1 Conceptual Model
- Step 2 Input Pilot Test Data
- Step $3 K_i$ Estimation in vertical and radial directions simulation
- Step $4 K_i$ Calibration
- Step 5 Predictive Modeling

Engineered Fill

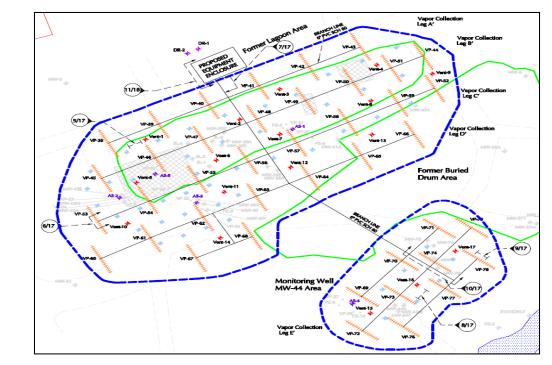
LANGAN

Native Soils

Results/Considerations

In addition to determining the required injection and extraction flow rates and pressures/vacuums...

- Semi-Confining Layers
 - Pressure Buildup
 - Groundwater Mounding
 - Contaminant Migration
- Low Permeable Vadose Zone
- Shallow Water Table
- Leaky Confining Layer

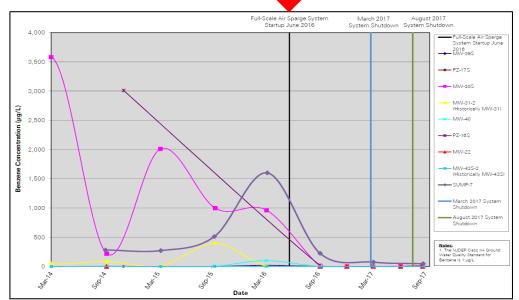

Final Design - Components

Low Permeable Vadose Zone/Shallow Water Table

- Artificial Cap
- Horizontal Vapor Collection
- Leaky Confining Layer
 - Impermeable Membrane
- Semi-Confining Layers
 - Pulsing Strategy
 - Chimney Wells

53 nested air sparge wells (10-15 ft. ROI)

41 vapor collection wells (15 ft. ROI)



Final Design – Initial Results

Initiated system operations June 2016...

- Mass removal ~ 62 pounds of VOCs (based on vapor effluent)
- Some metals mobilization oxidizing environment
- Drop in pH and increase in sulfate
 - Aerobic degradation organic acids formation
 - Metal sulfides dissociate to metal and sulfide

Implementation

The design is only as good as the **implementation**:

- Water Management
- Instrumentation Integrity
- Well Construction
- Liner Installation

Questions?

Thank You

