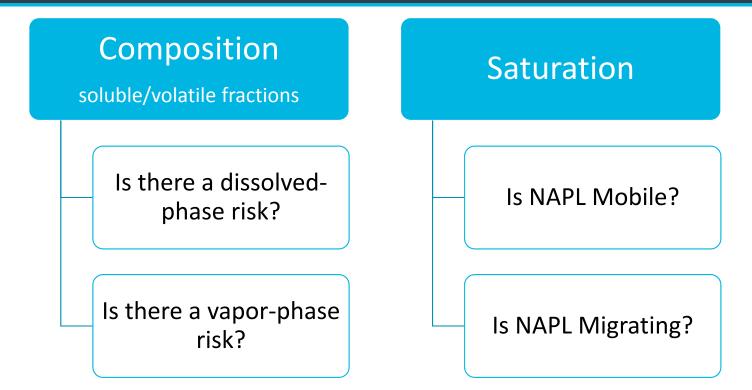
Battelle

2018 Chlorinated Conference | April 8-12 | Palm Springs, CA



Field-Scale Evaluation of Aerobic Biooxidation to Deplete Groundwater Contaminants from Coal Tar and Creosote

Randy Sillan, PhD, PE, BCEE

April 11, 2018

Risk-Based NAPL Management

Management decisions based on a robust NAPL CSM →
Remedial actions that directly and efficiently mitigate risk

Risk-Based NAPL Management

Coal Tar and Creosote Sites

- NAPL is at residual saturations
- NAPL is highly weathered
- Primary risk is offsite migration of the dissolved-plume (BTEX and PAHs)

Decrease source mass \rightarrow decrease mass discharge (M_D) \rightarrow M_D < Plume Attenuation Rate

Remediation Strategies

- Saturation change
- Containment
- Composition change

Risk-Based NAPL Management - Case Studies

Creosote

- Former wood treating facility and mill in Montana
 - Onsite creosote (DNAPL) source area with offsite dissolved plume
 - Primarily pentachlorophenol (PCP) and PAHs (naphthalene)
 - Aerobic biooxidation with biosparging evaluated for FS (Pilot Study in 2015-2016)

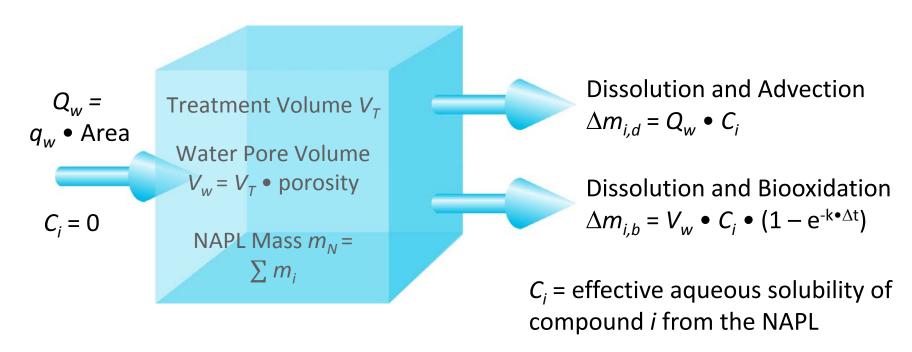
Risk-Based NAPL Management - Case Studies

Coal Tar

- Former Manufactured Gas Plant (MGP) site in Florida
 - Onsite coal tar (DNAPL) source area with offsite dissolved plume
 - VOCs and PAHs
 - Aerobic biooxidation with biosparging at property boundary (testing in portion of source area)

Risk-Based NAPL Management - Case Studies

Remediation Objectives


- Change composition of the NAPL by enhancing removal of groundwater contaminants
- Decrease mass discharge to less than the attenuation capacity of the groundwater system
- Contain dissolved plume onsite via natural attenuation

How does biosparging affect NAPL composition?

Can biosparging achieve remediation objectives?

NAPL Depletion Evaluation Approach

Developed a NAPL depletion model with two key elements: Lab-based Raoult's Law Method and Biooxidation

NAPL Depletion Evaluation Approach – Solubility Modeling

Raoult's Law

The effective aqueous solubility of compound *i* from the NAPL is

$$C_i = C_s^i \frac{\chi_i}{FR_i}$$

 C_s^i = pure phase aqueous solubility of compound i

 χ_i = mole fraction of compound *i* in NAPL

 FR_i = solid-liquid fugacity ratio of compound i

Mole Fraction

$$\chi_i = C_N^i \frac{MW_N}{MW_i}$$

 C_N^i = mass fraction of compound *i in* NAPL

 MW_i = molecular weight of compound i

 MW_N = average molecular weight of the NAPL

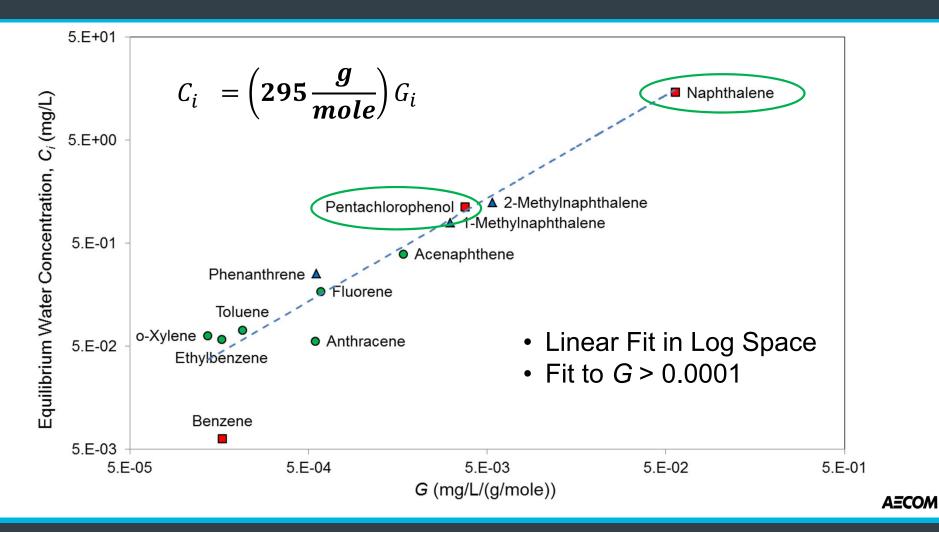
NAPL Depletion Evaluation Approach – Solubility Modeling

Raoult's Law-Based Method for Determination of Coal Tar Average Molecular Weight

Brown et al. 2005. *Environmental Toxicology and Chemistry*, Vol. 24, No. 8, pp. 1886-1892

Laboratory Method

- Mass fraction of target compounds in the NAPL
- NAPL-water equilibrium studies to quantify effective aqueous solubility of target compounds

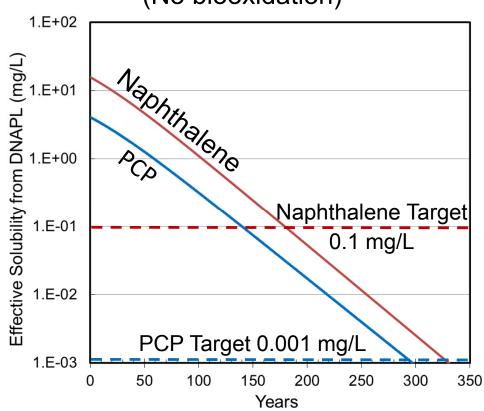

Key Concept: Linear slope of effective solubility for target compounds versus rearrangement of Raoult's Law is the average molecular weight of the NAPL

$$C_i = MW_NG_i$$

$$G_i = \frac{C_S^i}{FR_i} \frac{C_N^i}{MW_i}$$

Solubility Modeling – Creosote Case Study

10

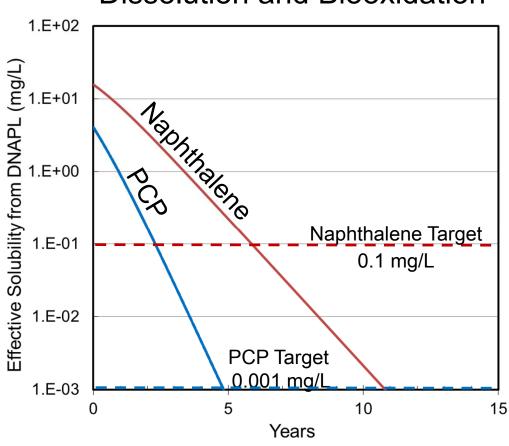

NAPL Depletion Evaluation – Creosote Case Study

Solubility Model:

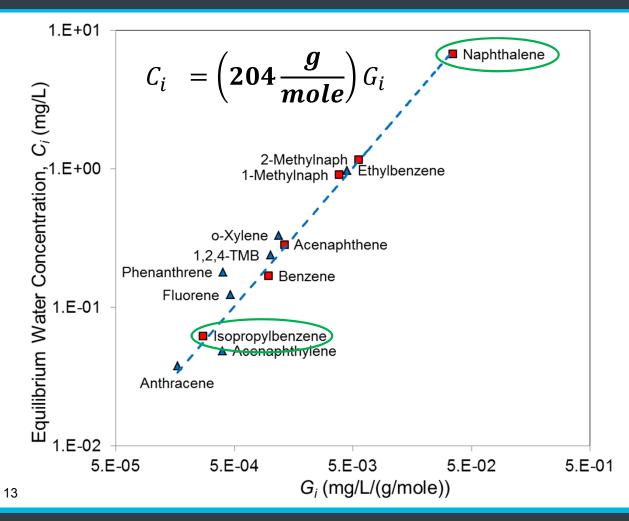
$$C_i = C_N^i \frac{C_S^i}{FR_i} \frac{295 \frac{g}{\text{mole}}}{MW_i}$$

 $Q_{w} = 27,600$ gal/day $m_{N} = 319,000 \text{ kg}$ $m_{PCP} = 6,500 \text{ kg}$ $m_{Naph} = 24,000 \text{ kg}$

Dissolution and Advection $\Delta m_{i,d} = Q_w \cdot C_i$ (No biooxidation)



NAPL Depletion Evaluation – Creosote Case Study

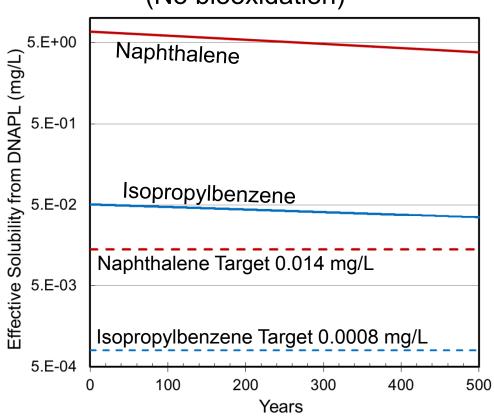

Field-Scale Biosparging Study

- Fit rates (k) to mass fraction reduction from soil data (baseline vs. 270-day)
- Naphthalene
 - 39% decrease
 - Half-life = 1.8 to 2.8 days
- PCP
 - 66% decrease
 - Half-life = 0.8 to 1.4 days
 - Onsite aerobic bioreactor, half-life
 = 0.1 day

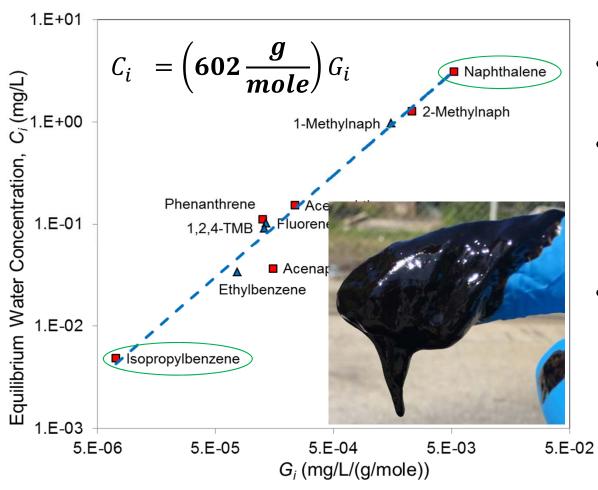
Dissolution and Biooxidation

Solubility Modeling – Coal Tar Case Study

- DNAPL outside of biosparge treatment area
- Mass Fractions
 - 4.4% Naphthalene
 - 0.05% Isopropylbenzene
 - 66% TPH (C8-C40)


NAPL Depletion Evaluation – Coal Tar Case Study

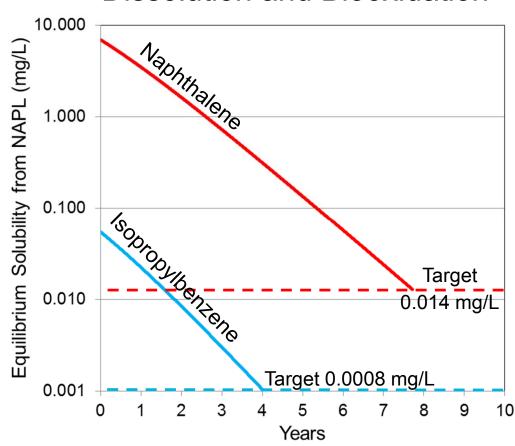
Solubility Model:


$$C_i = C_N^i \frac{C_S^i}{FR_i} \frac{204 \frac{g}{\text{mole}}}{MW_i}$$

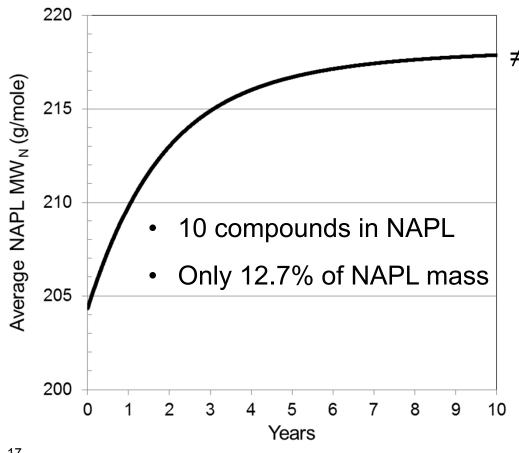
 $Q_w = 30$ gal/day $m_N = 59,800 \text{ kg}$ $m_{isoprop} = 30 \text{ kg}$ $m_{Naph} = 2,700 \text{ kg}$

Dissolution and Advection $\Delta m_{i,d} = Q_w \cdot C_i$ (No biooxidation)

Solubility Modeling – Coal Tar Case Study


- DNAPL within biosparge treatment area for 1 year
- Mass fractions
 - 0.7% Naphthalene
 - 0.001% Isopropylbenzene
 - 22% TPH (C8-C40)
- Decrease in mass fraction
 - 85% Naphthalene
 - 97% Isopropylbenzene
 - 67% TPH (C8-C40)

NAPL Depletion Evaluation – Coal Tar Case Study


Field-Scale Biosparging Study

- Fit rates (k) to mass fraction reduction in NAPL samples (1 year)
- Naphthalene
 - 85% decrease
 - Half-life = 0.9 days, k = 0.8/d
- Isopropylbenzene
 - 97% decrease
 - Half-life = 0.3 days, k = 2.2/d
- Partitioning to air ignored

Dissolution and Biooxidation

NAPL Depletion Evaluation – Coal Tar Case Study

≠ 602 g/mole

Not simulating depletion of TPH (C8-C40)

• 66% to 22%

Effect on solubility model:

$$C_i = MW_N \frac{C_S^i}{FR_i} \frac{C_N^i}{MW_i}$$

As
$$MW_N \ \widehat{\ } \rightarrow \ C_i \ \widehat{\ } \rightarrow C_N^i \ \widehat{\ }$$

- Deplete compound *i* faster
- Time to achieve targets?

Summary

- A laboratory-based Raoult's Law solubility model provides a basis for modeling long-term NAPL dissolution
- Biooxidation processes enhance NAPL dissolution and weathering
- Simple mass-balance models are viable tools to evaluate remedial alternatives in the context of a feasibility study

Take Home: Dissolvedphase remediation strategies
(including chemical and
biological oxidation) are viable
alternatives to enhance NAPL
composition change and
mitigating long-term
dissolution from NAPL

- Cost effectively
- Reasonable time

Battelle

2018 Chlorinated Conference | April 8-12 | Palm Springs, CA

Thank You!

T 850-528-2410 E randy.sillan@aecom.com