Insight into the Composition and Structure of Petroleum Metabolites Not Identified by Standard Methods of Analysis

David C. Podgorski, Phoebe Zito, Donald F. Smith, Xiaoyan Cao, Klaus Schmidt-Rohr, Sasha Wagner, Aron Stubbins, Jennifer T. McGuire, Dalma Martinovic-Weigelt, George R. Aiken, Isabelle M. Cozzarelli, Robert G. M. Spencer, Barbara A. Bekins

Battelle – 2018 Chlorinated Conference

Palm Springs, California

April 12, 2018

Considerations

 Natural organic matter (NOM) is continuous in molecular-level composition and structure

Size
Shape
Heteroatom
Aromaticity
Etc.

• The molecular of dissolved of similar to the parent organic matter source

Permafrost

Soil

Algae

Burn Residue

National Crude Oil Spill Fate and Natural Attenuation Research Site

August, 1979

Courtesy of Barbara A. Bekins

North Oil Pool and Plume

Courtesy of Barbara A. Bekins

Biologically-Derived Dissolved Organic Matter from Petroleum (DOM_{HC})

Courtesy of Barbara A. Bekins

The DOM_{HC} Plume at the Bemidji Site is Expanding

6 Bekins et al., 2016

Natural Attenuation of Petroleum-Derived DOM by Optical Spectroscopy

Parallel Factor (PARAFAC) Analysis of Excitation Emission Matrix (EEM) Spectra

- Decomposes EEMs underlying chemical components
 - Represents the values of fluorophores to each component
 - Leads to mathematical identification and quantification of varying fluorophores
- Environmental samples
 - Composition?
 - Identity of fluorophores?

Emissior

"Mathematical Chromatography" Stedmon and Wünsch <urbw@agua.dtu.dk>

PARAFAC Components – Petroleum-Derived DOM

Excitation Wavelength (nm)

Natural Attenuation of DOM_{HC} by Optical Spectroscopy

 a_{254} = Absorbance at 254 nm

CDOM_{HC} Continuum by EEMS

Distance from Center of Oil (m)

PARAFAC Components and Toxicity?

Molecular-Level Composition and Structure by Optical Spectrocopy?

High Throughput: Optical Properties and Molecular-Level Composition

Molecular-Level Composition and Structure

Ultrahigh Resolution Mass Spectrometry

Compositional Information from FT-ICR MS Formula m/z 2 ₉O₂ ₅**O**₃ 1**0**1 1.5 ${}_{1}S_{1}O_{2}$ ₃S₁O₃ 300 CI (Het 70 Condensed Aromatic 0.5 Polyphenol, Low O/C Unsaturated, Low O Unsaturated, High O Aliphatic 0 10 0.2 0.4 0.6 8.0 (% total) 0.0+ 0.2 0.4 0.6 0.8 1.0 0.0 **Oxygen : Carbon**

Natural Attenuation of DOM_{HC} at the Molecular Level by Optical Spectroscopy and UHR-MS

HIX = Humification Index C1-C6 = PARAFAC Components 1-6 a_{254} = Absorbance at 254 nm

1**H)**

atic OC carbons ear alkyl onents, not in hydrates.

iear alkyl onent.

•xyl groups are y attached to carbons: xylated aliphatic clic?) molecules.

Structural Continuum by NMR Spectroscopy

Relationship between Molecular Level Composition, Structure and Optical Properties of DOM_{HC}

Acknowledgements

- Jeanne Jaeschke
- Jared Trost
- Andrew Berg
- Bemidji Field Team

Questions?

