

Developing a Quantitative Decision Framework for Residential Vapor Intrusion Evaluations

April 9, 2018

Donna Caldwell; NAVFAC Atlantic
Loren Lund, Keri Hallberg, Chris Lutes, Chase Holton; Jacobs
Ed Corl; NAVSEA Laboratory Quality & Accreditation Office

Agenda

- Introduction
- Overview of Industrial QDF
- Development of Residential QDF
- Summary
- Q&A

QDF = Quantitative Decision Framework

Introduction

- Multiple lines of evidence (MLE) typically considered
 - Analytical and non-analytical
- EPA default attenuation factors (AFs) based on residences
 - VI not observed at industrial buildings using EPA default AFs
- Navy created VI database and quantitative decision framework (QDF) for industrial buildings
 - Defend moving off residential defaults
 - Used to systematically evaluate MLE
- DoD EDQW developing VI UFP-QAPP template
 - Utilizing industrial VI database and QDF
 - Developing/utilizing residential QDF
 - Intergovernmental Data Quality Task Force (IDQTF)

Objective: Describe Residential QDF

Overview of Navy Industrial VI Database & QDF

- Objectives
 - Create DoD-specific VI database for industrial buildings
 - Better understand attenuation and key factors influencing VI potential in industrial buildings
 - Create framework to assist RPMs in evaluating MLE
- 22 installations, 27 sites, and 79 buildings
 - Majority of sites have depth to water <15 ft
 - Large (50%), medium (35%), and small (15%)
 buildings
- Statistical analysis of database to guide:
 - Building prioritization (planning)
 - Likelihood of VI occurrence (investigation)
 - Planning for long-term stewardship

Refer to NESDI Project #476: Quantitative Decision Framework for Assessing Navy Vapor Intrusion Sites www.nesdi.navy.mil/Files/FinalRe

ports/FR 476.pdf

NESDI = Navy Environmental Sustainability Development to Integration

Overview of Industrial VI Database and QDF (cont'd)

Data **Analysis**

Key Influencing Factors/Empirical Relationships

Data Interpretation

- Considers multiple factors
- Decision science to weight importance of key factors
- Facilitates systematically evaluating MLE
- Undergoing peer-review and validation

Flowcharts

Parameter	Range Observed	University of Part Sales	Interpretation	
Sample Zone Area	ottope	2	Brutherampis zonocypticks are pointed for VOC distant continued for light order expo- int Subdictioning langual	
	100-1023 sq f			
	(Allohar nationals) as fair (2001) (00)	0		
	NUMB-101202341	4		
	>100,000 sc ft	2		
Average Subskib Doscontration	CREA is based on indicar an accommiglious	4		
	300-2 013s risk based on indicar air screening level	4	Childrendy in all constraints of the constraints of the arrivature.	
	2,000 10,000k to kessed on indoor air speering lend.	0	color in sobiab are needed to deen early surrogarding increase in obseruir connections	
	10,000-100,000 crisk based on indicar pingureen ng level	2		
	>100,000x rak based on indoor air screening level	4		
Average Organishster Vapor Concentration : Journal per conserved Coulonts on Secretal Secretain Countries Secretain Secretain Secretain Secretain Secretain Secretain Secretain Secretain Secretain Secretain Secretain Secre	CILIADA esi basad ar estas ar sonoring local (pi esi elamatas politick)	0	Data analysis above that concentrations above a minimum value in grown dander are specified to observa any account of the or and or are concentrations.	
	10)000-100,000 risk based on indoor sitropees up level	2		
	>100,000x risk based on indoor an acronning level	4		

Scorecard

Decision Matrix

Development of Residential VI QDF

Additional analysis of EPA 2012 residential database

USER'S QUICK START GUIDE

- Review of residential research (e.g., ASU & Indy)
- Literature review of VI residential studies

Residential Quantitative Decision Framework

- Re-analyses of EPA database by universities
- 3-dimensional modeling studies (e.g., Brown Univ.)

Naval Facilities Engineering Command

Compared findings for >30 factors from >25 studies

March 2018

- Example factors VOC source strength, distance, depth, meteorology, building characteristics, etc.
- Identified most significant influencing factors based on:
 - Consistency in studies and results of additional analysis
- Key influencing factors used to develop residential QDF

Residential VI QDF

Findings/ Re-analyses

Residential VI Studies/ EPA Database Key Influencing Factors/Empirical Relationships

GW Concentration/ Soil Type

Subslab Concentration

Depth-to-GW

Distance to High Source

Gravel Under Building

Preferential Pathways

Data Interpretation

Findings from Reanalysis: Subslab Source Strength

- Subslab (SS) and indoor air (IA) concentrations are correlated
 - Non-linear relationship
- SS predicts ~40-percent of measured IA… but consider MLE

Subslab source strength weighted using non-linear scale

Data from EPA (2012)

Weighting of Subslab Source Strength

Factor	Subslab Concentration	Weight
Average Subslab Soil Gas (SSSG) Concentration	SSSG < [33 x Indoor Air (IA) VISL]	0
	[33 x IA VISL] < SSSG <[130 x IA VISL]	0.5
	[130 x IA VISL] < SSSG < [530 x IA VISL]	1
	[530 x IA VISL] < SSSG < [2,100 x IA VISL] (or no information available)	2
	[2,100x VISL] < SSSG < 8,400 x VISL]	4
	[8,400 X VISL] < SSSG < 34,000 x VISL]	8
	SSSG > [34,000x IA VISL]	16

SSSG = Subslab Soil Gas VISL = Vapor Intrusion Screening Level

Findings of Literature Review: Distance to High Source

- Vapors decrease exponentially with lateral distance
 - Yao et al. (2013)
 - EPA 2012 VI CSM guidance
 - DoD 2015 industrial VI database
- Measured from point of release

Distance from high VOC source weighted using non-linear scale

Weighting of Distance to High Source

Factor	Distance	Weight
Distance to primary release point or high concentration mass storage area	Distance < 10 ft	8
	10 ft < Distance < 30 ft	6
	30 ft < Distance < 100 ft [or no information available]	4
	100 ft < Distance < 200 ft	2
	Distance >200 ft	0

Findings of Literature Review: Depth to Groundwater

Analysis of EPA 2012 Data

- Several studies suggest slightto-moderate relationship with GW depth and subslab
- Relationship is stronger at shallow GW depths (e.g., 5 ft. below foundation)

Depth to groundwater weighted highest for very shallow depths

Weighting for Depth-to-Groundwater

Factor	Depth to Groundwater	Weight
Depth to impacted groundwater	<5 feet (1.5 meters)	4 .
	5 to 10 feet (1.5 to 3 meters) [or no	
	information available on depth to	
	groundwater]	1
	10 to 16 feet (3.0 to 5.0 meters)	0.5
	>16 feet (5 meters)	0

Findings of Literature Review: Preferential Pathways

A feature that intercepts a VOC source, is connected to bldg., and that has little resistance to vapor flow

Adapted from McHugh & Beckley, AEHS 2017

- TCE vapors detected in manhole (•)
 - -Background contribution unclear
- Manhole-to-IA attenuation using tracers ≥1,300x
- Site VOCs observed in utilities intercepting source area
 - Vapors migrate/attenuate into bldgs.
- Potential for preferential vapor transport should be considered

Weighting for Potential Preferential Pathways

Factor	Subslab Concentration	Weight
Presence of atypical preferential pathway connecting building to strong source of contamination?	yes	4
	insufficient information	2
	known to be absent	0

Residential QDF Weighting of MLE

Residential QDF Decision Matrix with Indoor Air Data

IA = Indoor Air NFA = No Further Action VISL = Vapor Intrusion Screening Level

Summary

- Developed QDF so RPMs have a procedure to evaluate MLE (not just VOC > VISL)
- Residential QDF based on review of VI literature and reanalysis of EPA residential database
- Identified key VI influencing factors
- Applied decision science to weight the importance of MLE
- Cumulative weights allow RPMs to:
 - Consider more than just VOC > VISL and
 - Plan, implement, and interpret VI investigations
- VI UFP-QAPP template (in progress) incorporates the QDF, with plans to engage IDQTF

IDQTF = Intergovernmental Data Quality Task Force

Contacts and Questions

Points of Contact

NAVFAC Atlantic: Donna Caldwell

donna.caldwell@navy.mil

NAVFAC NAVSEA: Ed Corl

William.corl@navy.mil

Questions?

