Innovation that provides sustainable solutions to complex challenges worldwide

Optimizing VI Mitigation Design and Performance – A Case Study

April 9, 2018

Maggie Radford, PE, Loren Lund, PhD, Keri Hallberg, PE - Jacobs David Cleland, PG, Bryan Beck, PE - NAVFAC

CH2M is now Jacobs

www.jacobs.com | worldwide

Overview

- Why Smart VIMS Data Matter
- Site Background
- System Overview
- Smart Data during Design
- Smart Data during Installation
- Smart Data during O&M
- Summary

Image: NAVFAC

VIMS = Vapor Intrusion Mitigation Systems O&M = Operations and Maintenance

Why **Smart** VIMS Data Matter

- Liability does not end once mitigation system starts.
- Operational issues during VIMS lifetime increase O&M costs
- Many approaches utilized in VIMS design adapted from Radon mitigation systems and SVE design
 - Not fully accounting for the VI pathway and variability of site CSMs

VI = Vapor Intrusion SVE = Soil Vapor Extraction CSMs = Conceptual Site Model

Site Background

- Multiple sites with surficial aquifer CVOCs and PHCs impacts
 - Stable well-defined plumes
 - One site with active remediation
- Coastal plains
 - Variable surficial groundwater table
 - Shallow groundwater (5 10 ft. bgs)
- Non-Residential buildings
 - ~1,000 to 60,000 sq. ft
- Multi-Round investigation
 - VIMS installed to address potential future pathway

Image: USEPA

Photo: NASA

CVOC = Chlorinated Volatile Organic Compounds

4 PHCs = Petroleum Hydrocarbons

Site Background - System Design

- Retro-fit SSD systems
- Standard PFE testing conducted throughout each target building
- Building layouts/designs
 - Large blowers w/multiple nodes per blower
 - High suction fans connected to one node Horizontal
 - Exterior access and vertical risers throughout building
 - Most are vertical suction nodes one system horizontal trenched + retrofitted with SVE trenches

SSD = subslab depressurization
PFE = Pressure field extension

Site Background - System O&M

- System operation began in 2012
- Quarterly monitoring conducted since start-up
 - Grab subslab to indoor air differential pressure monitoring
 - Grab flow rate and vacuum measurements at nodes
 - Indoor/Outdoor/Exhaust discrete air samples

System Operation Summary

- Water entrainment observed following start-up
- Overall, systems have been operating effectively
 - Maintaining negative subslab to indoor differential pressure
 - Downtime < 30 days with most 0 days
- Significantly higher rainfall in 2014 2016
 - Water entrainment limited PFE and has periodically affected areas of Buildings (late 2014 – 2017)

What have we learned the last 6 years?

What Have We Learned?

- More Data DOES NOT equal better design and system operation
 - Smart Data does
- Overdesign is not the answer
- Not all performance monitoring data are created equal
 - Focus on data that monitors consistent operation and disconnecting VI pathway

Smart Data During Design

Think you may install a VIMS? Start design data collection NOW!

- Long-term subslab differential pressure
- Site-specific groundwater levels
- Site-specific meteorological data
- Review building drawings

[&]quot;wc = inches water column in = inches

Smart Data During Design – Temperature & Differential Pressure

 Evaluate seasonal variability during design

Note: Differential
Pressure references
subslab to indoor air
differential (i.e, the
more negative the
less likely to have VI)

Smart Data During Design – Differential Pressure

Evaluate
 differential
 pressure by zones
 within buildings

Smart Data During Design – Groundwater Data

- Have a shallow water table?
 - Site and even building-specific depth-togroundwater data
 - Site specific meteorological data

Key Point: Understand seasonal fluctuations and impact of significant rainfall events on groundwater table and future system operation

These are not \$\$\$ data

Photo: NASA

Smart Data During Design – Groundwater Data

- Have a shallow water table?
 - If feasible conduct diagnostic testing during the season with the highest precipitation
 - Evaluate design with diffuse system vacuums and variable flow rates
 - Don't fit a square peg into a round hole

Photo: Cupolex

Smart Data During Design

Building F Differential Pressure (SG34) and Precipitation

Key Point: Overdesign is not the answer with VIMS

 Operational issues observed primarily at systems with large blower

Note: Differential
Pressure references
indoor to subslab (i.e, the
more positive the less
likely to have VI)

Smart Data During Installation

- Document subsurface during installation
 - Fill type
 - Native soil type
 - Moisture content
 - Construction history
 - Expansion joints
 - Footing locations
 - Detailed floor plans

Smart Data During O&M - Exhaust

Collect exhaust concentrations for insight into long-term subsurface source strength trends and overall system performance

Building C PCE Exhaust Concentrations

PCE = Tetrachloroethene ppbv = Parts per billion by volume

Smart Data During O&M

 Blower flow rates do not always correlate with differential pressure

Blower flow rate can help in understanding of system operation

cfs = cubic feet per second

Smart Data During O&M

Indoor air concentrations alone are not a predictor of system performance

• PCE Passive Sample Results

Building A Indoor Air

NC VISL = North Carolina Vapor Intrusion Screening Level

Why **Smart** VIMS Data Matter

Site specific design that holistically evaluates CSM and operational concerns prior to start-up

- DESIGN

INSTALLATION

It's not too late to adjust design/installation or update performance monitoring plan

System operation is long-term and can always be optimized

O&M

Thank you!

Maggie Radford, PE

<u>Maggie.Radford@ch2m.com</u>

