The Autobahn of Vapor Intrusion – Pathway Evaluation from a Sole Source Impacted Subsurface Sewer

Aaron Friedrich and Andy Wallace

© Copyright 2018 by ERM Worldwide Group Limited and/or its affiliates ('ERM'). All Rights Reserved. No part of this work may be reproduced or transmitted in any form or by any means, without prior written permission of ERM.

ERM

Introduction

- Understand the sewer gas to indoor air migration pathway
- Present a sewer gas to indoor air pathway case study where the sewer and the impacts begin on-site
- Present effective receptor and source-based mitigation measures

<u>२</u>२२२

Pennell, 2013

Pennell, et.al, 2016

Assessment

Desktop

- Impacted media near or intersecting a sewer
- Understand how and where structures are connected to the sewer
- Obtain publicly available information on sewers
- Understand water presence and flow conditions in the sewers
- Permitted discharges to the sewer

Field

Sewer video inspections

۲ <u>۴</u> ۲ ۲

- Sewer water sampling
- Sewer gas sampling
 - Active / Passive
 - Sample Depth
- Groundwater sampling
- Subslab and indoor air sampling
- "Vapor" testing

Case Study

6

7

Residential Sampling Overview

- 17 Homes Sampled (Paired Subslab/Indoor Air) TO-15
 - 13 Homes > Residential IASL (TCE)
 - Of the 13 Homes > RIASL, 10 Homes > Residential Subslab SL (TCE)

Block 3

11

Sample ID	Sample Location	"AF"
2222	Basement	0.0002
3322	Main Floor	0.0001

Sample ID	Sample Location	"AF"	
3330	Basement	1.5	
	Main Floor	1.4	
3336	Basement	13.1	
	Main Floor	2.8	
2220*	Crawlspace	0.005	
3336	Main Floor	0.005	
	Basement	1.2	
3340	Main Floor	0.9	
	2nd Floor	0.9	
3346	Basement	0.002	
	Main Floor	0.0006	
	2nd Floor	0.0008	

Sample ID	Sample Location	"AF"
	Basement	0.00004
2406	Main Floor	0.00002
3400	Basement	0.006
	Main Floor	0.006
2400	Basement	0.00002
3422	Main Floor	0.00001

High Volume Sewer Water Pres	Volume Sewer Water Presence		
Alpha Range	0.005 to 13.14		
Average Alpha	1.99		

Low Volume Sewer Water Presence			
Alpha Range	0.00001 to 0.002		
Average Alpha	0.0005		

Results

- Receptor Focused Mitigation
- Vapor Testing/Plumbing Corrections (Floor Drains, Wax Rings, Piping, etc.)

- Air Purifying Units (Granular Activated Carbon Included)
- Subslab / Submembrane Depressurization Systems

Mitigation of 5 Homes

	Pre-Mitigation	First/Primary	Post-Mitigation	Second	Post-Mitigation	Final Mitigation
	TCE (ug/m ³)	Mitigation Method	TCE (ug/m ³)	Mitigation Method	TCE (ug/m ³)	Percent Reduction
3406 - Main	10.1	Dlumbing Connection	0.91			91.0
3406 - Basement	9.7	Fluinding Correction	1.0			89.7
3346 - 2nd Floor	28.6		25.5		5.3	81.5
3346 - Main	21.1	SSD	29.5	Plumbing Correction	1.8	91.5
3346 - Basement	81.9		83.8		20.3	75.2
3340 - 2nd Floor	75		5.6			92.5
3340 - Main	79.2	SSD*	9.3			88.3
3340 - Basement	105		20.6			80.4
3336 - Main	237	CCD & Dlumbing Connection	4.0			98.3
3336 - Basement	1,120	55D & Fluinbing Correction	5.0			99.6
3330 - Main	117	CCD*	2.7			97.7
3330 - Basement	130	55D"	3.1			97.6

= Existing Sewer = Sewer Plugged and Abandoned = New Sewer (Re-Route)

Post-Abandonment/Reroute sewer water/sewer gas sampling location

The business of sustainability

16

Post Abandonment TCE Results

Post-Abandonment **Pre-Abandonment Pre-Abandonment** Post-Abandonment MH-113265 MH-113265 TCE TCE MH-113267 MH-113267 TCE TCE Sewer Gas Average (ug/m^3) Sewer Gas (ug/m^3) Sewer Gas Average (ug/m³) Sewer Gas (ug/m³ 2014-2016 14,954 7/17/2017 121.0 7/17/2017 2014-2016 49,000 69.7 10/11/2017 6.4 10/11/2017 52.0 12/12/2017 2.1 12/12/2017 1.1 **Pre-Abandonment** Post-Abandonment **Pre-Abandonment** Post-Abandonment Sewer Water (ug/L) Sewer Water Average (ug/L) Sewer Water Average (ug/L) Sewer Water (ug/L) 312.6 7/17/2017 2014-2016 551 7/17/2017 2014-2016 < 5.0 Drv 10/11/2017 < 5.0 10/11/2017 Dry 12/12/2017 <5.0 Dry 12/12/2017 1911 3336 3346 3410 3414 3418 3422 3426 3338 3340 MANHOLE #113266 3302 3306 3310 3314 MANHOLE #113267-MANHOLE #113265 Pre-Abandonment Post-Abandonment **Pre-Abandonment** Post-Abandonment TCE MH-113266 MH-113266 TCE MH-113264 MH-113264 TCE TCE Sewer Gas Average (ug/m^3) Sewer Gas (ug/m^3) Sewer Gas Average (ug/m^3) Sewer Gas (ug/m^3) 2014-2016 17,697 7/17/2017 47.1 2014-2016 7/17/2017 23,658 41.9 10/11/2017 3.9 10/11/2017 1.3 2.1 12/12/2017 12/12/2017 1.5 Post-Abandonment Pre-Abandonment Sewer Water Average (ug/L) Sewer Water (ug/L) Sewer Water (ug/L) Sewer Water Average (ug/L) 2014-2016 7/17/2017 255 < 5.0 2014-2016 7/17/2017 304 < 5.0 10/11/2017 <5.0 17 10/11/2017 Dry 12/12/2017 <5.0 12/12/2017 Dry The business of sustainability

Conclusion

- 17 Homes sampled along sole source sewer to IA migration pathway
 - 13 Homes (76%) > Residential IASL
 - 10 Homes (59%) > Residential SSSL
- Highly variable "attenuation" factors (10² to 10⁻⁵)
 - Low Volume "AFs" 10⁻³ to 10⁻⁵
 - High Volume "AFs" 10² to 10⁻³
 - "AFs" > 1 may reflect flux of sewer gas into structures
- Multiple approaches may be needed for receptor mitigation
- Approach for source-based mitigation should aim to restrict impacts from entering sewer
- Comprehensive research needed for regulatory guidance

Contact Information

Aaron Friedrich, MS, LPG Senior Project Manager ERM Aaron.Friedrich@erm.com

Conference on Remediation of Chlorinated and Recalcitrant Compounds

April 8-12, 2018 | Palm Springs, CA

19 The business of sustainability

Andrew Wallace, MS, LPG Senior Project Manager ERM Andrew.Wallace@erm.com

www.erm.com

The business of sustainability

20