Vapor Intrusion Snapshot of Updates Teresie Walker, NAVFAC Atlantic, Norfolk, VA, USA Donna Caldwell, NAVFAC Atlantic, Norfolk, VA, USA Loren Lund, Jacobs, Shelley, ID, USA Innovation that provides sustainable solutions to complex challenges worldwide JACOBS® # Introduction The U.S. Navy and Department of Defense (DoD) are working to keep pace with the evolving science of vapor intrusion (VI). The DoD is updating their VI Handbook with Factsheets, which are available on the DENIX website. The Navy is also updating the DoD VI database of commercial industrial buildings, and developing VI Sampling and Analysis Plan (SAP) templates, protocols for VI data to be captured in a NIRIS Electronic Data Deliverable (NEDD), a GIS VI Screening tool, and a Matrix of Technologies for VI. These efforts provide more defensible and cost-effective tools for remedial project managers (RPMs). # Navy Industrial VI Database/Decision Framework - Objectives - Create a DoD-specific VI database for industrial buildings - Understand attenuation and key VI influencing factors - Create a framework to evaluate multiple lines of evidence (MLEs) - 22 installations, 27 sites, and 79 buildings - Majority of sites have depth to water <15 feet - Large (50%), medium (35%), and small (15%) buildings - Statistical analysis of database to guide: - Building prioritization (planning) - Likelihood of VI occurrence (investigation) - Planning for long-term stewardship Adapted from www.nesdi.navy.mil/Files/FinalReports/FR_476.pdf # DoD (2009) VI Handbook 2017 Factsheet Updates **Objective:** Update DoD (2009) VI Handbook with new technologies - Passive sampling - Real-time monitoring - High-volume soil gas sampling - Building pressure cycling - Tracers, surrogates, and indicators - Influence of background sources # NIRIS Electronic Data Deliverable (NEDD) Changes will help: - Capture/evaluate analytical and nonanalytical VI data - Identify Navy VI issues - Develop tools to efficiently address potential future VI - Bring consistency to data collection # **Navy GIS VI Screening Tool** #### Programmatic tool for screening VI potential - Query groundwater data from Navy data management system (NIRIS) - Apply Navy VI decision framework weights of importance to score VI potential - Display/interact with results geospatially # Navy Residential VI Decision Framework - Developed so RPMs can evaluate MLE (not just VOC > VISL) - Reviewed VI literature/EPA 2012 residential database re-analyses - Identified key VI influencing factors - Applied decision science to weight importance of MLE - Cumulative weights allow RPMs to: Consider more than just VOC > VISL - Plan, implement, and interpret VI investigations - Incorporating into VI UFP-QAPP template (in progress) VOC = volatile organic compound # Navy VI Matrix of Technologies | Source Type | Sub-
Objectives/Study
Questions | Sample Matrix
(where
applicable) | Multiple 8-hr or
24 hr Canister
Sampling
Events | Multiple 5-min
to 15-min
Canister
Sampling
Events | Multiple 1-wk
to 2-week
Canister
Sampling
Events | Multiple >3-day Passive Sampling Events | Building
Pressure Cycling
(with VOC and
dP monitoring) | | Portable
GC/PID | Portable high-
sensitivity PID | Field
Deployable
GC/ECD | Trace
Atmospheric
Gas Analysis
(TAGA) Unit | High Volume
Sampling | Indicator,
Tracer, and
Surrogate
Testing | Supplemental
Information | |---|---|--|--|---|--|---|---|-----|--------------------|-----------------------------------|-------------------------------|---|-------------------------|---|---| | Vadose Zone VOC Source within the Inclusion Zone and/or Groundwater VOC Source within the Inclusion Zone (applies to existing/future buildings) Objective: Determine if the VI pathway is complete and may pose potential unaccpetable risk (as defined by the regulatory program) | Characterize the
migration
pathway(s) in
vadose zone
(spatial/temporal
variability) | Subslab vapor,
multi-depth soil
gas, external
preferential
pathway vapor | +++ | ++ | ++ | + | 0 | +++ | ++ | + | +++ | +++ | ++ | +++ | CSIA, Compound
Ratio Analysis,
Meterological
Data, Logging
Depth to Water | | | Address long-term temporal variability of indoor air concentrations | Indoor air | + | 0 | ++ | ++ | +++ | + | + | 0 | +++ | 0 | 0 | ++ | | | | Address short-term
(e.g., 24 hr)
temporal variability
of indoor air
concentrations | Indoor air | ++ | + | 0 | 0 | +++ | ++ | + | 0 | +++ | + | 0 | ++ | | | | Identify vapor entry point(s) | Entry point vapor
(e.g., sewer lines,
cracks, wall cavity,
sump headspace,
flux chamber) | | + | 0 | + | +++ | +++ | ++ | + | +++ | +++ | 0 | +++ | | | | Assess
mixing/spatial
variability within
building | Indoor air, vapor
migration cavities | + | + | + | + | 0 | +++ | + | 0 | +++ | ++ | 0 | +++ | | | | Determine if
background sources
(indoor/ambient)
are contributing to
indoor air
concentrations | Indoor/outdoor
air, product
storage space(s),
subslab vapor, soil
gas | + | + | + | + | +++ | +++ | + | 0 | +++ | ++ | 0 | Supplemental | | #### Navy-Supported VI Research - 2018/2019 NESDI Temporal High-Resolution VI Study in Industrial Buildings - Continuously monitor indoor/subslab VOCs and other building parameters/characteristics for 1 year - Onsite GC/ECD, differential pressure, temperature, wind speed/direction, radon, etc. - Determine whether near worst-case VI conditions can be induced by controlled building pressure. - ESTCP/SERDP VI Research - Low-Flow Capillary Canister Sampling (ER-201504) - Preferential Pathway VOC Migration (ER-201505) - Mass Flux Characterization of Attenuation McHugh & Beckley (20 # VI QAPP/SAP Template - Objectives: - Provide prioritization strategy for VI investigations - Identify and document VI tools and strategies - Being developed by DoD Environmental Data Quality Workgroup (EDQW) - Finalizing QAPP worksheets (15, 20-24, 28) for: HAPSITE sampling - High-volume sampling - TO-15 analysis - Pressure cycling - Passive sampling - Worksheets 10, 11, and 17 next Manual, March 2005 - Target completion date is late December 2018 #### Acknowledgments - NESDI Project Team - DoD TSERAWG VI Subgroup/Contractors - NIRIS Workgroup - EDQW-NAVSEA and Contractors - ESTCP/SERDP, Clarkson University, GSI, Geosyntec, and Jacobs IDQTF, UFP-QAPP