

ER-201504 Alan Rossner, Ph.D Clarkson University

April 10, 2018

PROJECT TEAM

- Clarkson University
 - Alan Rossner
 - Michelle Crimi
 - Ben Stone
 - Marley Carroll
 - Justin Miceli
- CH2M HILL
 - Loren Lund
 - Keri Hallberg
 - Christopher Lutes
- Naval Facilities Engineering Command
 Donna Caldwell

 - Bryan Peed

AIM OF THE STUDY

- Characterize VOCs from vapor intrusion using an innovative low flow rate controller attached to evacuated canisters.
- Validate the feasibility of using long term canister sampling (2weeks) method indoors and comparing it to both long term diffusion tube sampling (2 weeks) and consecutive multiple day 24-hour canister sampling.

EXPOSURE LIMITS

Trichloroethylene

Exposure Limits (ppm)	8-hr TWA (ppm)	STEL (ppm)	Ceiling (ppm)	μ g/m ³
OSHA- PEL	100	200	300	537,400
CAL-OSHA - PEL	25			134,350
NIOSH-REL	Са			
ACGIH - TLV	10			53,740
EPA Regions, Selected States	0.0011 to 0.0048			6-26

• ppm = parts per million, where 10 ppm = 53.74 mg/m^3 or $53,742 \text{ ug/m}^3$

- TWA = Time Weighted Average
- STEL = Short Term Exposure Limit
- C = Ceiling limit
- Ca = Potential occupational carcinogens

SCREENING LEVELS (SLs) AND TLVs

Analyte	Carcinogenic SL TR = 1 x 10 ⁻⁶ (μg/m ³)	Carcinogenic SL TR = 1 x 10 ⁻⁴ (μg/m ³)	Non- carcinogenic SL THQ = 1 (μg/m³)	Non- carcinogenic SL THQ = 3 (μg/m ³)	TLV-TWA (μg/m³)
Benzene	1.6	160	130	390	1,600
TCE	3	300	8.8	26.4	54,000

Notes:

SL = screening level

TR = target cancer risk

THQ = total hazard quotient

TLV-TWA = threshold limit value based on an 8-hr time-weighted average

RELATIONSHIP TO A DISEASE MODEL

- Long-term average as the most effective means of predicting long-term disease.
- For many chronic toxicants, burden and damage are unlikely to be impacted by large transient or peak exposures during short periods of a work shift or for 24 hours in the case of IAQ.
- Exposures are log-normally distributed (almost always) suggesting that individual risk is related to the mean exposure over time.
- Hence, the primary aim of assessment of exposure for long-term effects should be to evaluate the mean exposure received by the individual worker or occupant over time.
- It also follows that exposures to 'peaks' will generally be less important in relation to long-term risk and, therefore should be weighted less.
- Hence a longer term sample should provide a better estimate of long term exposure and risk.

Rappaport (1991), and Rappaport, Selvin and Roach (1988)

PERFORMANCE OBJECTIVES

- Compare to 24-hr canister approach and diffusion sampler approach: accuracy, precision, completeness
- Cost-effectiveness
- Expertise

Quarterly for 2 years

<u><u>v</u> aar (011) 101</u>					
Capillary canister				Analyze samples at	
Collect 2 week samples in 8 locations (+QC)	24-hour canister			Clarkson	
	Simultaneously collect daily 24- hour samples for 2 weeks	Diffusion samplers		 Statistically analyze VOCs detected, their 	
		Simultaneously collect 2 sequential 1-week samples		measured concentrations, and their variability • Track costs and	
	-			document required expertise	
		-			

METHODS: SITE DESCRIPTION

<u>Building B</u>

- Built in 1919 on elevated concrete slab
- Max [TCE] in indoor air = 83 μ g/m³
- Large open areas, some offices, storage

<u>Building A</u>

- Built in 1941 on concrete slab
- + Max [TCE] in indoor air = 170 $\mu g/m^3$
- Was used to support public works and utilities maintenance

Risk-based screening level = $8.8 \ \mu g/m^3$ (1.64 ppb)

- Max [TCE] from 2012
- Cracks sealed \rightarrow resampled
- Buildings remain above acceptable level
- Other contaminants in sub slab: Toluene, Freons, TCA, DCE

TEST DESIGN

Demonstrate and validate capillary canisters

Capillary-Canister Traditional Canister **Diffusion samplers** Background - 14 day samples - 24 hour samples - 2 consec. 7 d samples - Ambient air – 2 upwind quarterly - 8 locations + 3OC - 8 locations + 10C -8 locations + 10C- Sub slab – 4 buildings, - 1 sample per location - 14 samples per location - 1 sample per location collect every 3rd day, - 2 field blanks - 4 seasons - 4 seasons quarterly - 4 seasons - 4 seasons TOTAL SAMPLES = 44/yrTOTAL SAMPLES = 504/yrTOTAL SAMPLES = 88/yr TOTAL SAMPLES = 68/yr

- 1 personnel on site during full sampling period each quarter
- Samples collected daily and shipped to Clarkson's CARES laboratories
- Analysis by thermo GC-MS, Markes pre-concentrator and autosampler
- TO-15 and TO-17
- Detection limit: TCE: 0.06 ppb, PCE: 0.046 ppb

TEST DESIGN:

- Two buildings with 2 locations per building
- Two-week sampling period, quarterly, 2 years
- Monitoring station at each site
- Sampling devices
 - Diaphragm Canisters (3.4 ml/min)
 - Capillary flow controller Canister
 - 0.32 and 0.1 mL/min
 - Sorbent tubes (2.68 mL/min)
- Other
 - Temperature
 - Relative humidity
 - Pressure
 - Direct-reading: VOCs

PERFORMANCE ASSESSMENT: LABORATORY

MARCH 2017 LOCATION 1 TCE CONCENTRATIONS

MAY 2017 LOCATION 1 TCE CONCENTRATIONS

AUGUST 2017 LOCATION 1 TCE CONCENTRATIONS

JANUARY 2018 LOCATION 1 TCE CONCENTRATIONS

JANUARY 2018 LOCATION 4 TCE CONCENTRATIONS

14 DAY SAMPLE VS MEAN OF THE 24 HR SAMPLES

PERFORMANCE OF THE THERMAL DESORPTION TUBES VS CANISTER FOR TCE

TCE Concentration Collected Using Diaphragm (ppb)

SEASONAL COMPARISON BETWEEN DIAPHRAGM AND CAPILLARY FLOW CONTROLLERS

SUB-SLAB VS. INDOOR AIR (MARCH 2017-JANUARY 2018)

▲L1 ●L2 ■L3 ◆L4

COST ASSESSMENT (STILL UNDER EVALUATION)

- How many samples would be needed to make the same risk-based decision with similar degree of certainty?
- What are the associated costs?
 - # samples materials and analysis
 - Field sampling time
 - Deployment and travel costs

CONCLUSIONS

- Fifteen out of the 16 tests demonstrated that the capillary flow controller performed within 95% confidence level from diaphragm.
- No statistical difference at concentration, temperature, and humidity ranges for CPC and Diaphragm.
- The longer sampling period should be more representative of long term exposure.
- Long term sampling may provid4 better data for decision making

QUESTIONS

