Compound Specific Isotope Analysis (CSIA) - Internal sources versus subsurface contamination

Trine Skov Jepsen

Trine Skov Jepsen Isak Hjort Dahm Thomas Larsen Kresten Andersen

The Capital Region of Denmark

Mariam Wahid Henriette Kerrn-Jespersen Ida Damgaard Nina Tuxen

Ministry of Environment and Food of Denmark

Environmental Protection Agency

Internal sources versus subsurface contamination

Traditional approach

Weaknesses

- Hard to distinguish between internal sources and subsurface contamination.
- Many sampling points resulting in high costs with a long investigation period.
- Risk of unregistered contamination leak through the sewer system.

New approach - Screening of indoor air

Advantages

- Less invasive -> less inconvenience for the homeowner/user of the building
- Fast risk assessment of the indoor air -> Less money spent on investigations

Compound Specific Isotope Analysis - CSIA

A: Microorganisms degrade "light" molecules (12C- and 35Cl-molecules) faster/easier then "heavy" molecules (13C- and 37Cl-molekules).

B: Preferred degradation of molecules with lighter isotopes (isotope fractionation) leads to "heavier" isotope signature at the source.

Sampling

ORBICON

Mass of contaminant in each tube

- Benzene: 50-900 ng

- PCE/TCE: 100-2250 ng

Flow: 0.1 l/min

No more then 100 I per tube

Additional restrictions

• Special tubes (dimension and sorption material) ~ 1.000 \$/pcs.

• 2-3 tubes per sampling point (deviation no more than 30%)

- An active dry cleaning facility

- An active dry cleaning facility

- No clear indication of source ($\delta^{37}CI$)
- Indicates influence of internal source (δ^{13} C)

- No internal source

- ▲ Groundwater
- ▲ Subsurface contamination
- Indoor air

- Subsurface contamination and groundwater has same isotopic signature
- Indicates influence of subsurface contamination (δ^{13} C)
- Indicates influence of internal source ($\delta^{37}CI$)
- -> No clear indications Mixed sources?

- No internal source

• Indicates that contamination of indoor air is from subsurface contamination (δ^{37} Cl and δ^{13} C)

Conclusion – Case studies

- CSIA is a fast and accurate method to determine the origin of contaminants in indoor air
 - Sites showing clear indications of large influence from internal sources
 - Site showing clear indications of large influence from subsurface contamination
 - Sites showing indications of mixed sources
- The difference between isotope ratios of indoor air and subsurface contamination is small
- The isotope ratio between soil air and groundwater is identical

