Innovation that provides sustainable solutions to complex challenges worldwide

A Survey of Decision Support Tools for **Comparing Cleanup Options and Increasing Decision Making Confidence**

April 12, 2018

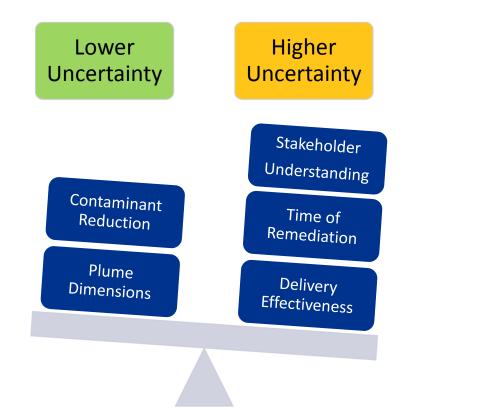
Paul Favara

CH2M is now Jacobs

www.jacobs.com | worldwide

Agenda

- The need for more robust analysis
- Multi-Objective Decision Analysis
- Using Microsoft Excel Tools (Goal Seek, Data Table, Solver)
- Decision Tree Management Software
- Monte Carlo Analysis
- Summary

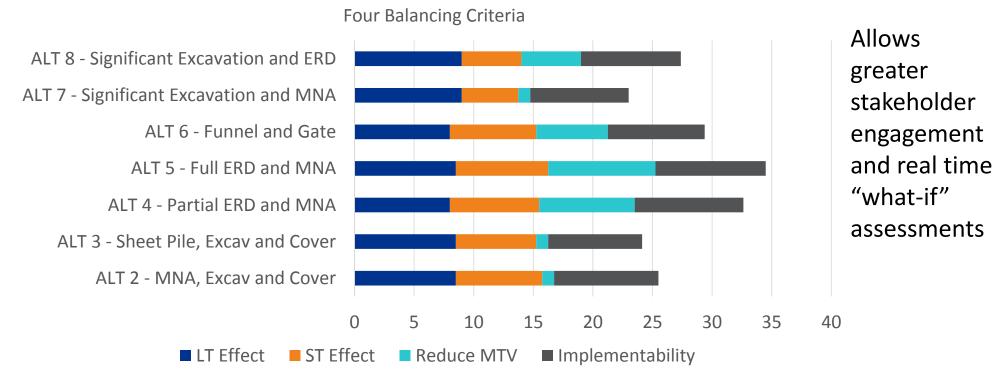


The Need for More Robust Analysis


- As a whole, the remediation industry under-estimates time and cost of remediation
- There is an inherent optimism in our approaches
- We often have incomplete data sets for developing remedies
- Getting smarter at understanding this, with Adaptive Site Management techniques and "observational approach"
- Another way to be smarter is to consider the uncertainty we have now and make decision with this knowledge

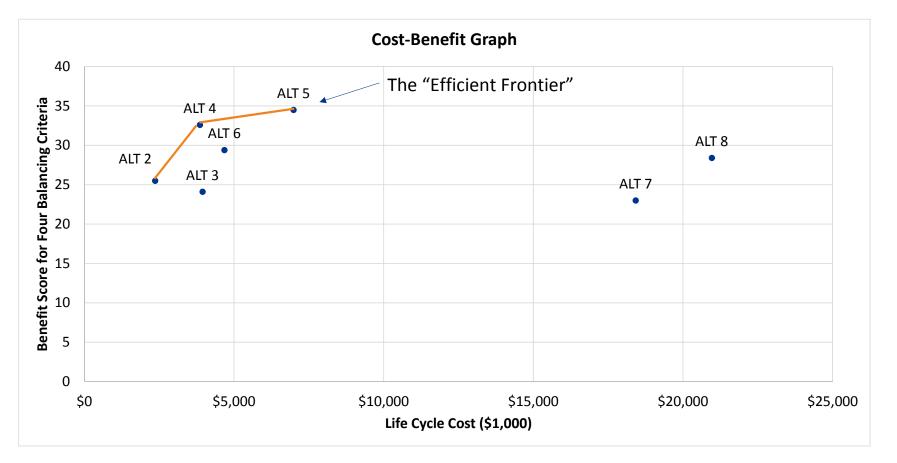
Many parameters have some uncertainty

Are you making your decisions based on a false future?

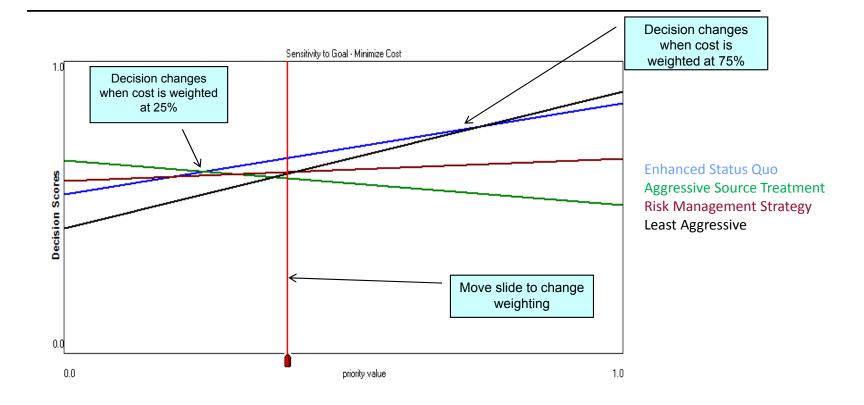


Multi-Objective Decision Analysis (MODA) Applications

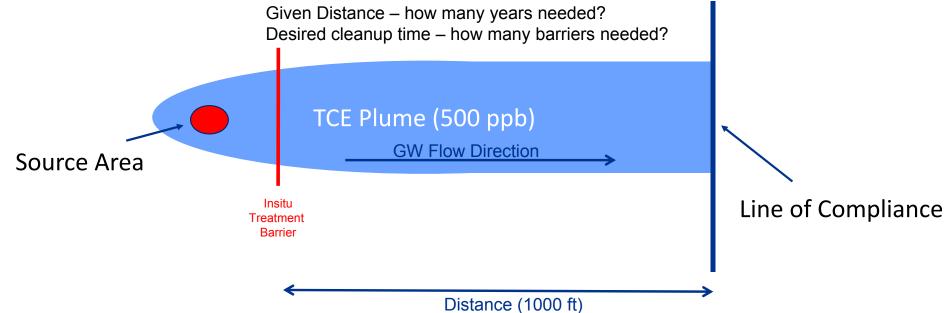
- Decision requires analysis of competing variables (e.g., CERCLA balancing criteria)
- Stakeholder input and understanding
- Clarify understanding of criteria driving decisions
- Clarifies relative value and benefits


MODA provides semi-quantitative scores to better discern strengths and weaknesses wrt to CERCLA Balancing Criteria

All sub-criteria for balancing criteria scored (24 in all)


JACOBS[®]

MODA Cost Vs. Benefit and the "Efficient Frontier"


Sensitivity Analysis for Weighting Of *Minimize Cost* Criteria (Can determine how sensitive weights are in decision?)

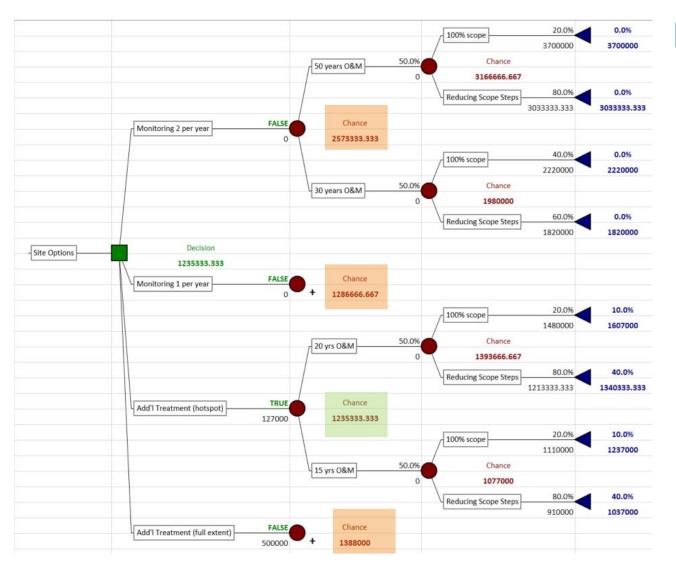
Time to cleanup downgradient of PRB? Goal Seek and Data Table Example

Pore Volume Related Calculations

Goal Seek: Find a solution to your problem

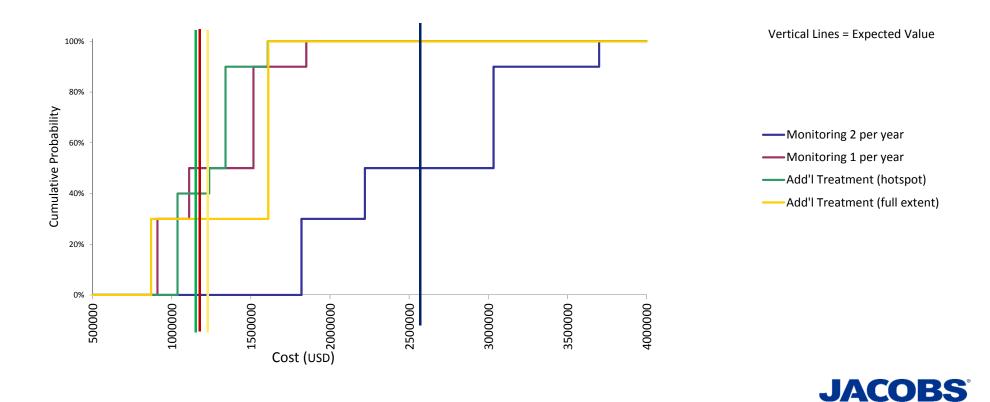
Get		Veb	Recent S			Queries & Connec Properties Edit Links	tions $\begin{array}{c} \mathbb{A} \\ \mathbb{A} \\ \mathbb{A} \\ \mathbb{A} \\ \mathbb{A} \\ \mathbb{A} \end{array}$ Sort $\begin{array}{c} \mathbb{A} \\ \mathbb{A} \\ \mathbb{A} \\ \mathbb{A} \end{array}$	Filter Reapply	Text to Columns			ecast Outline	?, Solver
	Get & Transform Data Queries 8		s & Connections		Sort & Filter		Data Tools		Forecast				
F3	F3 🔹 : X 🗸 f_{x} Flushing Distance (duration known)												
	А	В	С	D	E	F	G	Н	I	J	К	L	M
1				Soil	Porosity (n):	0.22	dimensionless	Goal Seek Results			1		(c)
2		E	Bulk Den	sity of the	Aquifer (pb):	1.59	g/cm3		PV	$7 = -\frac{1}{1}$	$\frac{1}{1+(n/\rho_h)}$	V C >>>	$\langle \ln \left \frac{C_s}{C} \right $
3				Seep	age Velocity:	0.55	ft/day	1.49		ln(.	$1+(n/\rho_b)$	$K_{oc}f_{oc}))$	(C_i)
4		F	raction o	of Organic	Carbon (f _{oc}):	0.005	dimensionless					Distan	P
5	C)rganic Car	bon Part	titioning F	actor (K _{oc}) ⁽¹⁾ :	150	L/kg		Flus	shing Yea	$rs = \frac{1}{Seen}$	age Vel *	
6			Distri	bution Co	efficient (K _d)	0.75	L/kg				beep	uge ver	nu bob
7		Initial C	ontamin	ant Conce	entration (C _i):	500	ug/L						
8	Target Co	ontaminan	t Concen	tration (i.	e., MCL) (C _s):	5	ug/L			Goal Se	aek	? ×	
9	Number of	Pore Volu	mes			27							
10	Flushing Du	uration (dis	stance kr	nown)		135	Years	50		S <u>e</u> t cell: To value		Î	
11	[Distance K	nown			1000	feet			-	ging cell: SFS3	£	
12	Flushing C	stance (du	ration kr	nown)		74	Feet				ОК	Cancel	
13	[Duration K	nown			10	yrs						

Two-Way Data: Shows how results vary with input parameters


Ge	Get & Tra	nsform Data	nt Existing es Connections	Refresh All -	Queries & C		2↓ Z↓	Z A A Z Sort	Filter	Clear Reapply Advanced	Text to Column	Flash R Is Fill Du	Remove uplicates Validativ Data	1	ate Relationship	Data Model	What-If Analysis • Forec	
F3	$F3 \rightarrow F $											0						
1	A B	C	D	E	F	G	H		1	J	K	L	M	N	0	Р	Q	
2		Bulk Dong		prosity (n):		dimension g/cm3	less		DU	7	1		$\ln\left(\frac{C_{s}}{2}\right)$	Data Ta	able	? ×	-	
2	2 Bulk Density of the Aquifer (ρ _b) 3 Seepage Velocity					ft/day			ΓV	$r = -\frac{1}{\ln(1 - 1)}$	$+(n/\rho_{b}K)$	$(a, f_{ac}))$	$\left(\frac{C_s}{C_i}\right)$	Row ing				
4		Fraction o	f Organic Ca			dimension	less						(.,		input cell: SFS			
5	Organic	Carbon Part	-			L/kg			Flus	hing Years	s =	Distanc	-	-	OK	Cancel		
6								_	Seepage Ve			geVel *	el * Kd * 365			Cancel		
7	Init	ial Contamin				ug/L												
8	Target Contami					ug/L												
9	Number of Pore Vo			, , , ,	27					Change in F	lushing Yea	ars as Fund	ction of Orga	nic Carbo	n and Seepa	ge Velocity		
10	Flushing Duration	distance kno	own)		135	Years			_	_								
11	Distance	e Known			1000	feet							Organic (Carbon				
12	Flushing Distance (duration kno	own)		74	Feet			135	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009	
13	Duratio	n Known			10	yrs		lay)	0.3	111	157	203	248	294	340	385	431	
14								ft/d	0.4	83	118	152	186	221	255	289	323	
15								Seepage Vel (ft/day)	0.5	67	94	122	149	176	204	231	259	
16								ge V	0.55	60	86	111	135	160	185	210	235	
17								eba	0.6	55	78	101	124	147	170	193	216	
18								See	0.7	48	67	87	106	126	146	165	185	

Decision Tree Management Example Additional EVO? Hot-Spot Treatment? Broader Treatment?

- 8-acre plume was treated with EVO and ZVI in 2010
- Effective reduction of TCE
- c12DCE and VC persist (plume approx. 3 acres)
- c12DCE projected to be below cleanup levels in 25 years
 - Some well trends still increasing
- Most wells show no decreasing VC trend
- Options Considered Which one has the best probable outcome?
 - Continue long-term semi-annual monitoring
 - Reduce monitoring to annual
 - Hot-spot treatment
 - Transect treatment through plume

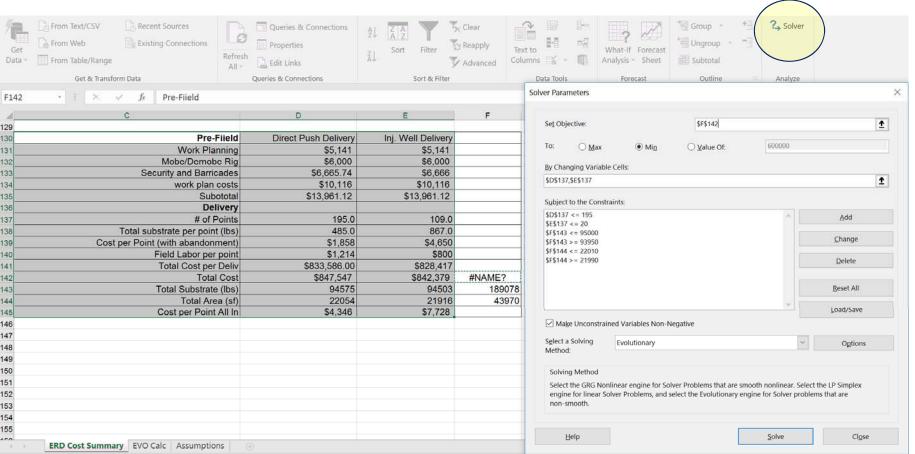


Decision Tree Model

Probable Costs

Semi-Annual costs most expensive; other three options in same cost range and each provides significantly different time to reach cleanup objectives

Is there a benefit to using both injection wells and direct push points? (Excel Solver)


- 20,000 sf cVOC plume planning EVO delivery
- Target treatment depth 5-15 ft-bgs
- Initially considered direct push delivery only
- Considering some permanent injection (near likely hotspots) to facilitate future injections
- Is there a "sweet-spot" for the two different delivery technologies?
- DPT: lower cost for delivery point versus higher labor for delivery
- Injection Well: higher capital cost, fewer points, lower delivery costs

Cost of using only direct push or injection wells

Work Planning and Pre-Delivery	Direct Push Delivery	Inj. Well Delivery
Work Planning	\$5,141	\$5,141
Mobe/Demobe Rig	\$6,000	\$6,000
Security and Barricades	\$6,666	\$6,666
work plan costs	\$10,116	\$10,116
Subtotal	\$27,922.24	\$27,922.24
Delivery Costs		
# of Points	195.0	109.0
Total EVO per point (lbs)	485.0	867.0
Cost per Point (with abandonment)	\$1,858	\$4,650
Field Labor per point	\$1,214	\$800
Total Cost for Delivery (w/EVO)	\$833,586	\$828,417
Total Cost	\$861,508	\$856,340
Total Substrate (lbs)	94575	94503
Total Area (sf)	22054	21916
Cost per Point All In	\$4,418	\$7,856

Solver Input Screen

JACOBS[°]

Microsoft Excel Solver used to assess

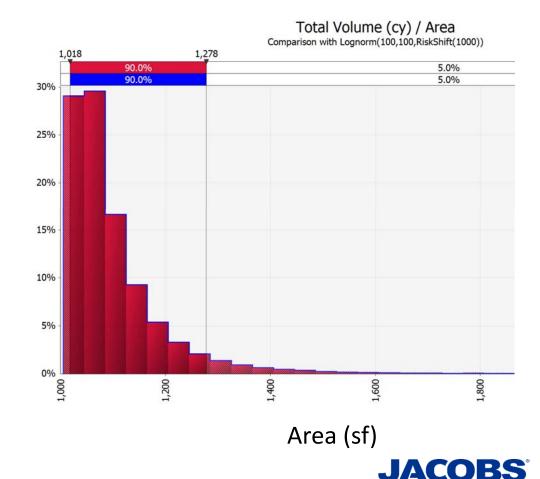
Constraints:

Minimize cost

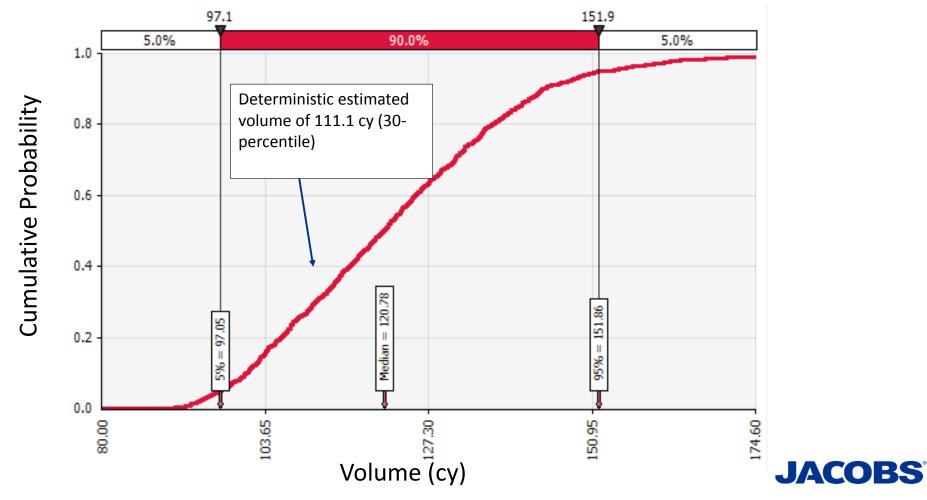
93,950 < EVO lbs < 95,000

21,950 < sq. ft. < 22,050

Adjust number of points with < 20 Injection Wells


	Direct Push Delivery	Inj. Well Delivery	
Work Planning	\$5,141	\$5,141	
Mobe/Demobe Rig	\$6,000	\$6,000	
Security and Barricades	\$6,665.74	\$6,666	
work plan costs	\$10,116	\$10,116	
Subtotal	\$13,961	\$13,961	
# of Points	167.6	15.1	
Total substrate per point (lbs)	485.0	867.0	
Cost per Point (with			
abandonment)	\$1,858	\$4,650	
Field Labor per point	\$1,214	\$800	
Total Cost per Deliv	716580	114595	
Total Cost	\$730,541	\$128,556	\$859,098
Total Substrate (lbs)	81300	13073	94373
Total Area	18958	3032	21990
Cost per Point All In	\$4,358	\$8,526	

Solution not found, but criteria met



How can we address uncertainty in area of soil contamination based on investigation data

- Area = 1,000 sf
- Depth = 3 ft
- Volume = 111 CY
- Assign probability distributions to area and depth
- Depth = uniform +/- 20%
- Area was more uncertain, selected log-normal distribution

Cumulative probability distribution shows original estimates optimistic

Summary

- MODA is recommended where there are competing objectives and a range of stakeholder perspectives
- Excel tools can:
 - Solve complex solutions to define key variables,
 - Provide tabular data on how different variables impact results,
- Decision Tree models provide a comparison of different management options and probable outcomes
- Monte Carlo Analysis allows for replacing uncertain variables with probability distributions
 - Allows better understanding of uncertainty and decisions based on probability and risk tolerance
- All of these tools provide a means to "stress-test" your design and cost calculations

Thank you!

© Copyright Jacobs May 8, 2018

www.jacobs.com | worldwide