Removal of Selenium from Refinery Wastewater Using Sulfur-Modified Iron (SMI)

Cindy G. Schreier, Ph.D. (PRIMA Environmental, Inc.)
Peter F. Santina (SMI-PS Inc.)

Selenium Basics

- Metalloid; common forms:
 - Selenite, Se(IV): SeO₃²⁻
 - Selenate, Se(VI): SeO₄²⁻

- Toxic at higher levels
- Federal MCL 0.05 mg/L
- Sources in drinking water
 - Discharge from refineries or mines
 - Natural deposits

Selenium and Refineries

- Present in sour crude oil
- Carried through refining process; sour water stripper conc. ~ | mg/L
- Existing removal methods
 - Iron co-precipitation
 - Bioremediation
 - Evaporation
- Existing methods often \$\$\$, difficult to operate, generate sludge, or require space

SMI®-III Basics

- Granular, iron-based media
 - Patented
 - NSF certified
 - Around for > 20 years
- Removes As, Se, Cr(VI), Hg, nitrate
- Removal occurs through adsorption and/or chemical reaction
- Used ex situ
- Spent media can be recycled

Using SMI

- Shipped dry
- Once wet, must remain wet
- Flow is upflow
- Must be "fluffed" periodically to prevent cementation
- Iron may be released
- Complete systems available

Screening Level Column Tests

- 60 mL syringe
- 50 mL (~ 100 g) SMI
- EBCT 10-20 min
 (2.5-5 mL/min)
- Upflow
- Measure Se and other parameters after ~ 100 bed volumes

Waters Tested

- Sour water stripper (SWS) effluent
 - Non-phenolic
 - Phenolic / oily
- Oily water sewer
- Chemical sewer
- Mixed sources
- As Received pH: 6-12
- Contains selenate,
 selenite, selenocynate

Pre-treatment Options

- None
- pH adjustment (to ~ 6)
- Removal of oil (via polymer)
- Oxidation of Se (via peroxide)

Selenium Removal – Screening

Site	Water Type/Source	Pre-treatment	ЕВСТ	Total Selenium, mg/L		% Removed
			min	Influent	Effluent	
Site A	SW-A	none	10	0.92	< 0.010	100
Site A	SW-B	oil removal	10	1.5	0.43	71
Site A	SW-B	oil removal	10	1.4	0.64	54
Site A	SW-B	oil removal	10	2.1	1.1	48
Site A	SW-B	oil removal	10	2.1	1.1	48
Site A	SW-B	Oil removal + oxidation	10	2.1	0.73	65
Site B	SW-A	none	10	0.25	0.28	-12
Site B	SW-B	none	10	0.64	< 0.010	100
Site B	SW-C	none	10	1.6	0.58	64
Site B	SW-C	pH adjust	10	1.4	0.54	61
Site B	SW-C	none	20	1.3	0.18	86
Site C	pond infl.	none	10	0.076	0.015	80
Site C	sewer	none	10	0.1	0.063	37
Site D	chem sewer	pH adjust	15	0.82	0.52	37
Site D	mixed sources	pH adjust	10	0.86	0.73	15
Site D	mixed sources	none	20	0.9	0.51	43

Site A, SW-A (100% Removal)

Analyte	Units	Influent	Effluent
Selenium			
dissolved	mg/L	n.m.	< 0.010
total	mg/L	0.92	< 0.010
рН		7.0	5.7
Color		Pink/orange	Pale yellow

No pretreatment; 10 min EBCT

- Complete As removal
- As removal due to adsorption within the bed, not coprecipitation with iron
- pH change atypical

Site A – SW-A Field Pilot

Parameter	Value	
Diameter, in (cm)	2 (5.1)	
Bed height, in (cm)	40 (102)	
EBCT, min	5	
Influent Se, μg/L	650 - 1,200	
Effluent Se, μg/L	< 5 (no breakthrough)	
Backwash frequency	24-48 hrs	
Duration	6 months	
Capacity	> I2 mg Se / g SMI	
Next Steps	60 gpm unit to be delivered Spring 2018	

Site B, SW-B (100% Removal)

Analyte	Units	Influent	Effluent
Selenium (total)	mg/L	0.64	< 0.010
Iron (total)	mg/L	< 0.60	12
рН		9.1	6.2
Color		Light brownish orange/slightly cloudy	Brownish yellow

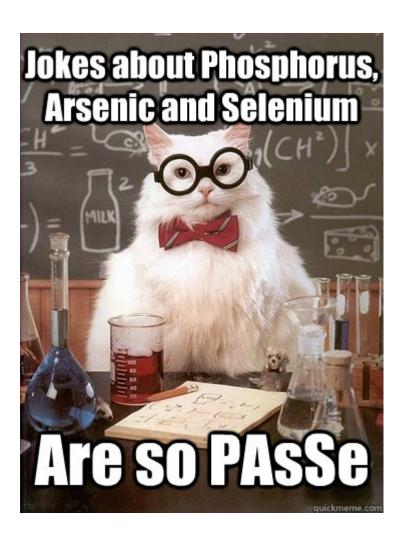
No pretreatment; 10 min EBCT

- SMI effective at elevated pH
- As removal due to adsorption within the bed, not co-precipitation with iron
- Post-treatment iron removal may be required

Site B — SW-B Field Pilot

Parameter	Value	
Diameter, in (cm)	2 (5.1)	
Bed height, in (cm)	40 (102)	
EBCT, min	5	
Influent Se, μg/L	850	
Effluent Se, μg/L	< 5 (no breakthrough)	
Backwash frequency	24 hrs	
Duration	3 weeks	
Next Steps	Studying full size system	

Summary / Conclusions


- Screening level tests demonstrated SMI can remove Se from refinery waste streams.
- Pre-treatment may be needed to achieve complete removal
- Iron removal may be needed posttreatment, but no other sludge formed
- Long-term effectiveness of SMI borne out in 6 month field pilot
- Capacity > I2 mg Se/g SMI

Contact Info

Cindy G. Schreier, Ph.D.
PRIMA Environmetal, Inc.
cschreier@primaenvironmental.com
www.primaenvironmental.com
916-939-7300

Peter F. Santina
SMI-PS, Inc.

pete@smiwater.com
www.smiwater.com
916-209-3430

