

The Combination of Matrix Diffusion and Abiotic Decay Makes **Two Slow Natural Attenuation Processes a Dynamic Duo**

TRC Presentation to Battelle Chlorinated Conference

Ken Quinn, Steve Sellwood, and Dave Hay

April 2018

Purpose and Agenda

Purpose:

 Demonstrate when the beneficial effects of abiotic decay and matrix diffusion need to be considered in CVOC plume behaviors.

Agenda:

- Beneficial and Negative Effects of Diffusion into low permeability zones
- Causes of abiotic decay of CVOCs?
- When can naturally occurring CVOC abiotic decay affect back diffusion?
- When can matrix diffusion and abiotic decay team up for CVOC plume stability?

Clay & Silt Zones Can Be Cause of Back Diffusion

- Say this is a 1960 VOCs release (i.e., an old source).
 - Migrating in the high K zones (the green dyed water moving through the sand).
 - Diffusion occurring into & out of low K zones (dark colored clay zones).

Natural Decay of CVOCs via Iron Minerals

- Abiotic Decay via Iron Minerals
 - Background from He, et. al. 2009, and J.T. Wilson
 - Decay of TCE, etc., to CO₂
 and other oxidized products

Carried out by Magnetite

- Degradation mechanism
 - Free radical decay
- Daughter Products
 - CO₂, etc.
 - No Typical Daughter Products
- Degradation can go un-noticed

CO₂ and other oxidized products From: Wilson, 2015

Natural Decay of CVOCs via Iron Minerals

- He, et.al. (2009) details the mechanisms of CVOC decay by magnetite.
- Wilson et al. demonstrate
 - The practicality of abiotic decay via iron minerals.
 - A general correlation to decay rate (i.e., half life)

Natural Decay of CVOCs via Iron Minerals

- So, magnetite causes CVOC degradation.
- What is magnetite?
- It can't be that common. Right?

- Microbial Insights data base
- 500 samples all with some magnetic susceptibility
- Typical average 1x10⁻⁷ m³/kg
- TRC data 6 of 7 sites tested were positive for magnetic susceptibility
- Observations:
 - Fine grained zones
 have highest
 magnetic
 susceptibility.
 - ND was for a dolomite, free of sand/silt/clay (i.e., no detrital sediment & no authigenesis).

Site	Soil- Rock Type	Magnetic Susceptibility (10 ⁻⁷ M³/kg)		Avg. Half-Life per Wilson's Correlation
	Туре	Min-Max	Avg.	(yrs)
1	Sandstone	0.1-5.9	1.41	4.6
2	Sandstone	5.8-25.8	11.4	0.5
2	<mark>Shale</mark>		<mark>76.2</mark>	<mark>0.09</mark>
3	Cyclothem	0.68-1.7	1.3	6.93
4	Dolomite	ND	ND	No Decay
5	Sand		3.2	2.3
5	<mark>Clay</mark>		<mark>71.0</mark>	<mark>0.09</mark>
6	Sand	1.1-22.2	5.7	1.2
7	Sand	0.4-15	5	2.4

Field Data on Presence of Magnetite (cont)

Does Magnetic Susceptibility REALLY Indicate Abiotic Decay?

- Abiotic Decay Assay by: Microbial Insights (Dr. Freedman Clemson University)
 - Approach: spike soil/rock sample with ¹⁴C labeled TCE
 - Detection of ¹⁴C in CO₂ is positive demonstration of abiotic decay & an estimate of decay rate.
- 1 TRC sample (so far):
 - Magnetic Susceptibility: 15x10⁻⁷ m³/Kg
 - Abiotic Assay: decay rate=2.4 yr⁻¹, $t_{1/2}$ = 0.3 yrs
 - Fits in Wilson's correlation between magnetic susceptibility and decay rate.

For more detail on the ¹⁴C Abiotic Assay:

See Dr. John Wilson's Presentation later in this conference

What's the Effect of Low Permeability Zones' TRC Diffusion combined with Abiotic Decay

Diffusion into Low K Zone can be:

Negative:

Back diffusion that extends CVOC source areas for decades.

Positive:

Diffusion into zones with higher decay rates

 When is combination of matrix diffusion and abiotic decay of benefit?

Video image from: Doner and Sale, http://projects-web.engr.colostate.edu/CCH/research.shtml ⁹

Simulate Combination of Matrix Diffusion and Abiotic Decay

- Model setup: Very similar to Sale, et. al. 2013
 - Vary decay rate in low K zone to illustrate if/when its of value
- MODFLOW/MT3DMS
 - Cross sectional view
 - Very tight layer spacing to simulate diffusion in vertical
 - 1 cm in interface between high and low permeability)
 - Decay in water (Chemical Reactions Package)
 - Decay in soil (Diffusion Package)

Model Setup

Model Setup – Cross Section

- Source Zone:
 - 5,000 ug/L for period of 10 years
 - No Source for period of 30 years
 - For a "typical" release date of 1975, 40 yrs = 2015

Typical Model Results

Base2H2D4

Model simulations

Model Results - No Decay

Concentration Profile in Clay at Source

- No Decay allows unrestricted diffusion into clay.
- Then total mass back diffusion.
- Migration downgradient
- Long tail

Model Results - No Decay

Model Results Concentration Profile in Clay at Source

Model Results Time Concentration – Downgradient

Conclusions

- 1. Abiotic Decay is an essential component of most CSMs.
- 2. Abiotic Decay properties of clay or fractured rock matrix can result in either:
 - A bad case of back diffusion when no decay is occurring.
 - Reducing (eliminating?) back diffusion problems if abiotic decay is high in the clay/rock matrix and the clay seams are numerous.
- 3. Greater mass of clay/matrix per volume of aquifer can result in more diffusion and greater mass loss.
- 4. High % of clay seams in aquifer or porous fractured media can present greater potential for MNA.
- 5. DFN sampling results can be confusing if decay in the matrix is not considered.

Thank you

THAIN YOU

Acknowledgement and thanks to

Dr. John T. Wilson

for his introduction and encouragement on abiotic decay.

Questions?

Ken Quinn

P: (608) 826-3653

E: <u>KQuinn@trcsolutions.com</u>

David Hay

P: (303)395-4016

E: <u>DHay@trcsolutions.com</u>

Steve Sellwood

P: (608) 826-3608

E: <u>SSellwood@trcsolutions.com</u>