Oral Bioavailability of Nonpolar Organic Chemicals in Soil for Use in Human Health Risk Assessment (HHRA)

Shuo Yu, Rosalind Schoof, Dorte Harrekilde

OUTLINE

Background/Objectives

Bioavailability and Factors Influencing Bioavailability

Approaches to Measure Bioavailability

Regulatory Uses of Bioavailability in HHRA

PAH and PCB Bioavailability Summaries

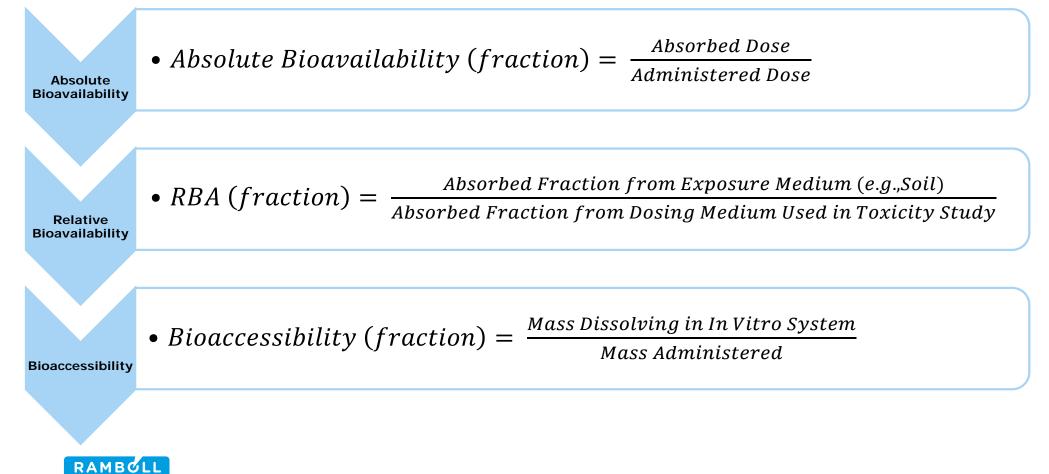
Data Gap and Additional Research

BACKGROUND

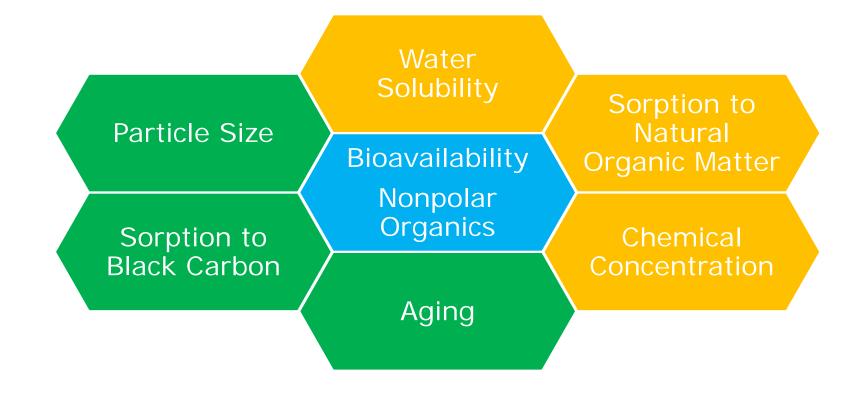
Risk-based cleanup goals not adjusted to account for reduced bioavailability in soil

Higher remediation costs without more protection of public health

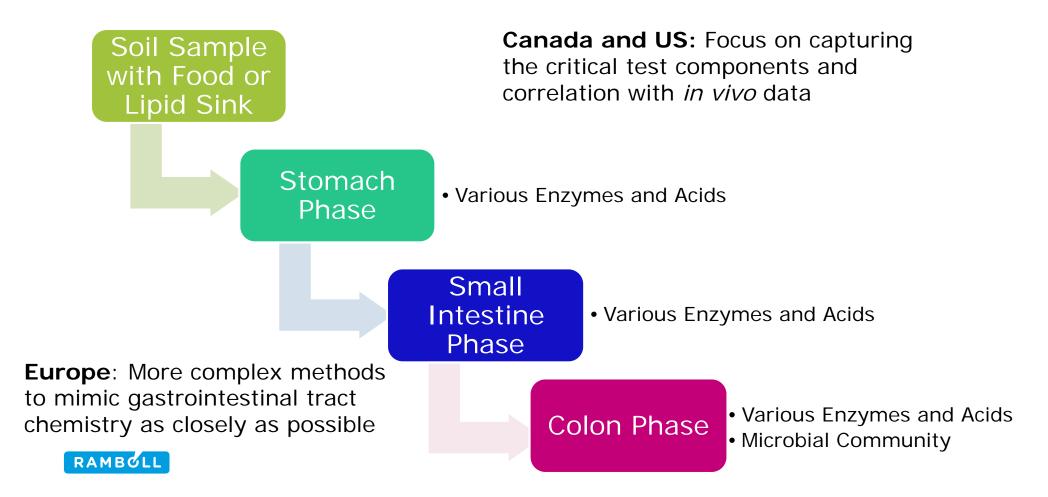
More meaningful and realistic risk management decisions derived from bioavailability adjustments in HHRAs


OBJECTIVES

Summarize regulatory practice of using bioavailability in HHRAs among countries Present findings from a comprehensive literature review of PAH and PCB oral bioavailability in soil


Evaluate feasibility of developing regulatory guidelines for *in vitro tests* of PAH and PCB bioavailability

FACTORS INFLUENCING BIOAVAILABILITY



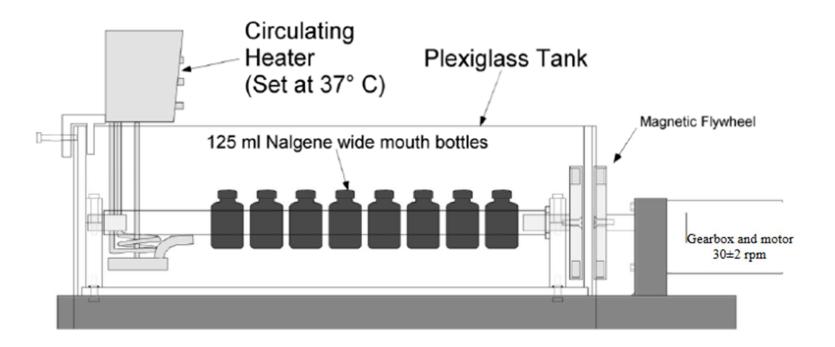
IN VIVO APPROACHES TO MEASURE BIOAVAILABILITY

- Blood Concentrations
 - ✓ For chemicals readily absorbed and excreted quickly (e.g., arsenic) or slowly excreted chemicals at an approximate steady state (e.g., lead)
- Fecal Excretion
 - \checkmark For chemicals without biliary excretion
- Urinary Excretion
 - \checkmark For chemicals excreted primarily in urine
- Tissue Concentrations
 - \checkmark For chemicals that accumulate in specific tissues

IN VITRO APPROACHES TO MEASURE BIOAVAILABILITY

IN VITRO APPROACHES TO MEASURE BIOAVAILABILITY

Physiologically-Based Extraction Test (PBET) and Colon-Extended PBET (CE-PBET)


Simulator of the Human Intestinal Microbial Ecosystem (SHIME)

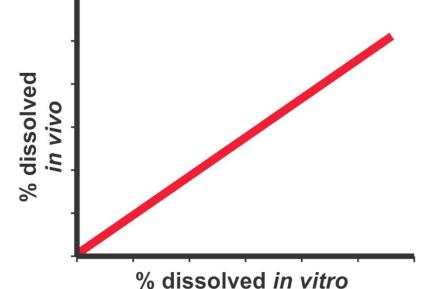
Het **RI** jksinstituut voor **V**olksgezondheid en Milieu (National Institute of Public Health and the Environment, Netherlands)(RIVM) Method

Fed ORganic Estimation human Simulation Test (FOREhST)

In Vitro Gastrointestinal (IVG) Method

IN VITRO APPROACHES TO MEASURE BIOAVAILABILITY

Example of In Vitro Bioaccessibility Extraction Apparatus (USEPA 2017)

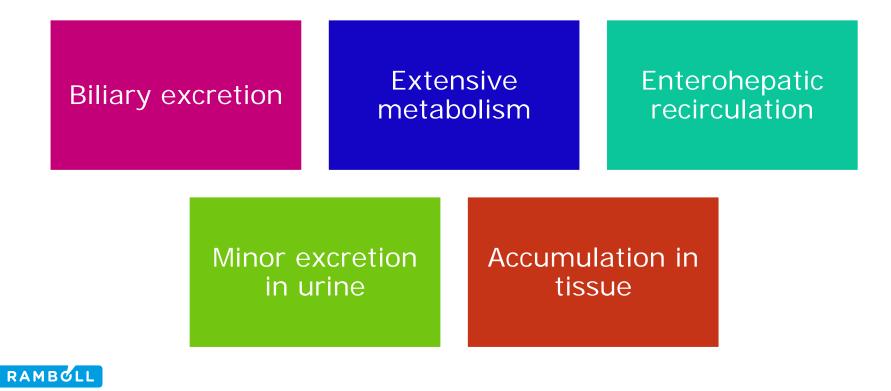

ROLE OF BIOAVAILABILITY IN RISK ASSESSMENT

*Relative Bioavailability (fraction) = a * In Vitro Bioaccessibility (fraction) + b*

 $Intake_{unadjusted} * RBA = Intake_{adjusted}$

Soil bioavailability lower than diet bioavailability (USEPA critical toxicity studies) \rightarrow RBA < 1.0

Very limited correlations between *in vitro* and *in vivo data* for organic chemicals \rightarrow practically *in vitro* bioaccessibility directly used as RBA


REGULATORY USES OF BIOAVAILABILITY IN HHRA

Country	Formal Guidance	HHRA Application	Standard <i>In</i> <i>Vitro</i> Method	Validation
US	Yes, 2007	Yes, lead, arsenic, dioxin/furan	Yes, lead, arsenic	Yes, lead, arsenic (underway)
UK	Yes, 2005 (under limited conditions)	Yes, arsenic, chromium, lead	Yes, arsenic, chromium, and lead	No
Netherlands	No	Yes, lead	Yes, lead, PAH	No
France	No	Yes, cadmium, lead, zinc	Yes, lead, cadmium, arsenic	Yes, lead, cadmium, arsenic
Canada	Yes, 2017	Yes, metals	No	Yes, lead, arsenic
Australia	Yes, 2013	Yes, lead, arsenic	No	No

PAH BIOAVAILABILITY - TOXICOKINETICS

Complexity of toxicokinetics within human body leads to lack of a widely accepted *in vivo* method:

PAH BIOAVAILABILITY – LITERATURE REVIEW

	In Vivo Study	<i>In Vitro</i> Study
No. Reviewed	23 studies	34 studies (13 studies with food/lipid sink)
Soil Type	field soil (21 studies), lab spiked soil (4 studies)	field soil (29 studies), lab spiked soil (6 studies)
Soil Concentration	<1 mg/kg to >4,000 mg/kg, a few <10 mg/kg	<1 mg/kg to 5,000 mg/kg, a few <10 mg/kg
Soil Particle Size	reported in 18 studies, much larger than <150 µm in 11 studies	reported in 26 studies, much larger than <150 µm to in 8 studies
Type of Organic Carbon in Soil	no characterization	characterized in a few studies
Bioavailability Result	RBA <0.6% to 100% (field soil), 50% to 100% (lab spiked soil)	bioaccessibility 0.1% to 76% (field soil), 2% to 89% (lab spiked soil), most <50%

PAH BIOAVAILABILITY - STUDY DESIGN GUIDELINES

CE-PBET is recommended as the *in vitro* method for oral PAH bioavailability in soil

Study design consistent with a good practice established by BARGE:

- Three digestive compartments, including stomach, small intestine, and colon
- Fed state and a sorption sink
- Microbial community in colon compartment
- Aged/weathered site soil with particle size $<150 \ \mu m$

PCB BIOAVAILABILITY - TOXICOKINETICS

Different PCB congeners with a wide range of properties and behavior in human digestive system

Distributed preferentially to adipose tissues

Absorbed from gut primarily via lymphatic system, less likely than PAHs to exhibit liver first pass metabolism

Biliary excretion

PCB BIOAVAILABILITY – LITERATURE REVIEW

	<i>In Vivo</i> Study	In Vitro Study
No. Reviewed	9 studies	3 studies (1 study with food)
Soil Type	field soil (4 studies), lab spiked soil (5 studies)	field soil (1 study), lab spiked soil (2 studies)
Soil Concentration	< 0.1 mg/kg to 300 mg/kg, a few <10 mg/kg	< 1 mg/kg, 7 and 14 mg/kg, and 300 mg/kg
Soil Particle Size	reported in 5 studies, much larger than <150 µm in 3 studies	no study reported
Type of Organic Carbon in Soil	characterized in 4 studies	no characterization
Bioavailability Result	RBA 36% to 100% (field soil), 3% to 100% (lab spiked soil)	bioaccessibility 6% to 40% (field soil without food), 43% to 85% (field soil with food), 30% to 79% (lab spiked soil)

PCB BIOAVAILABILITY - STUDY DESIGN GUIDELINES

A single standard *in vitro* method for PCB bioaccessibility cannot be recommended due to data limitations

Approaches being used for PAHs may provide a useful template with consideration of similar aspects in study design:

- At least two digestive compartments: stomach and small intestine
- Fed state and a sorption sink
- Aged/weathered site soil with particle size $<\!150\ \mu m$

DATA GAP AND ADDITIONAL RESEARCH

A variety of field soils (i.e., different types of organic carbon) A range of environmentally relevant concentrations

A standard protocol of *in vitro* method

Inclusion of food or a lipid sink Reliability of *in vivo* approach and feasibility of *in vitro* method validation against *in viv*o data

DISCLAIMER

This study was conducted under contract to the Danish Environmental Protection Agency.

QUESTIONS?

