

ADAPTIVE REMEDIATION MANAGEMENT OF A GROUNDWATER CLEANUP PROJECT

Eleventh International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Palm Springs, CA, USA, 9 - 12 April 2018

James Fairweather Head of Environmental Remediation

I3_1120_#413_Fairweather

PRESENTATION

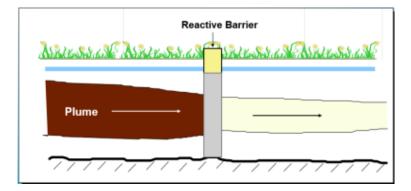
- Background and history
 - Botany Industrial Park
 - Botany Groundwater Cleanup Project
- Adaptive remediation research
- Adaptive management of the Groundwater Treatment Plant
- Clean-up progress
- Remediation strategy review process
- Note: **M** denotes **million**

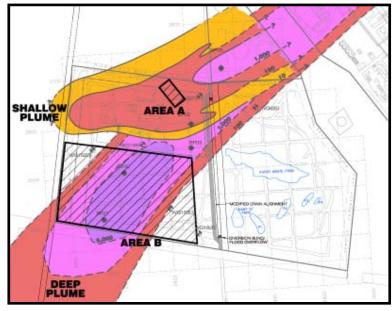
BOTANY SITE HISTORY

- First plants: CS₂ in 1942; ChlorAlkali in 1944
- Chlorinated solvents TCE, PCE, CTC 1940s to 1991
- PVC (via 1,2-DCA [EDC] and VC as intermediates) 1950 to 2001
- Others:
 - Olefines and polyolefines polythene, polypropylene
 - Surfactants and glycols, glycol ethers
 - Silicates, ammonia/urea, rubber chemicals, herbicides, formaldehyde, ...
- Business restructure in 1997/8 ICI Australia → Orica → divestment of businesses (J Stening poster)

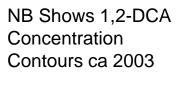
1955 – three years before first connection to trade waste ...

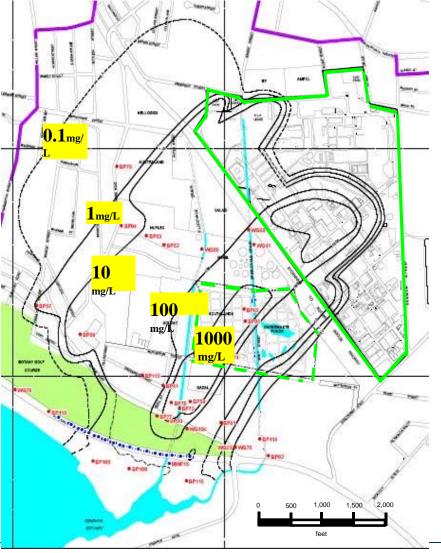
BOTANY INDUSTRIAL PARK


INITIAL ENVIRONMENTAL INVESTIGATIONS


- Stage 1 Survey 1989-90
 - A snapshot of soil and groundwater contamination
 - Provided basis of scope for more comprehensive investigation
- Stage 2 Survey 1993-96 (Woodward-Clyde)
 - 9 volume report
 - Soil, groundwater, surface water, marine biota, air
 - central plume source "exacerbated" (J Duran poster)
 - Human health risk assessment
 - Scope for further investigations
 - Remediation options
- Stage 3 'Remediation' 1997-2003 (WWC/URS)
 - Lined leaking stormwater drain pipes (prevent groundwater ingress)
 - Realigned Springvale Drain and excavated contaminated sediments
 - Remediation options workshop April 1997
 - > identified permeable reactive barrier and bioremediation as options

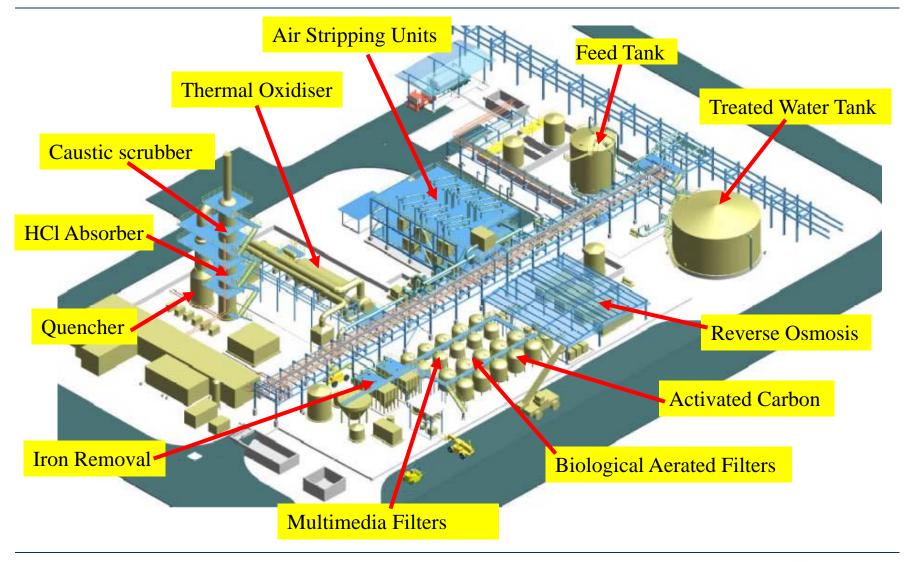
REMEDIATION INVESTIGATIONS


- Permeable reactive iron barrier
 - Laboratory column studies (ETI, Canada)
 - Pilot-scale reactive iron barrier installed in Feb 1999
 - Good results 80-90% mass removal
 - Full-scale challenge: 25 m deep in sand
- Bioremediation
 - Laboratory microcosm studies (Uni of Toronto, Canada) 1999-2000
 - Field trials (Geosyntec) 2003-05, >\$3M
 - > shallow aquifer; passive barrier
 - Emulsified veg oil; calcium oleate
 - 1-2 lb/d CHC degradation
 - > deep aquifer; active barrier
 - Emulsified veg oil; ethanol
 - 13-42 lb/d CHC degradation

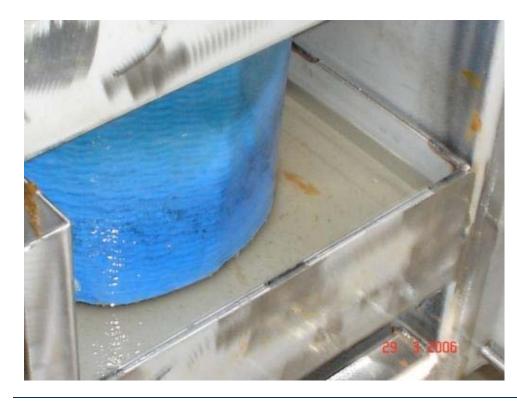


BUT TIME WAS RUNNING OUT ...

BOTANY INDUSTRIAL PARK


PUMP AND TREAT

- Notice of Clean Up Action issued by NSW EPA in September 2003
 - Required
 - > Hydraulic containment
 - > Ex situ treatment
 - > Source area removal
 - > Groundwater cleanup plan
- Groundwater Treatment Plant and hydraulic containment network
 - Construction in 2004 and 2005
 - Groundwater feed in January 2006
 - 3 containment lines; 113 pumping wells
 - ~6 ML/d (~1.6 M USgal/d) treatment,
 ~4.5 ML/d (~1.2 M USgal/d) treated
 water for non-potable reuse
- Parallel evaluation of source remediation technologies


GROUNDWATER TREATMENT PLANT

AIR STRIPPING VOC FROM GROUNDWATER

- Counter-current flow of air and water
- Minimum air flow to prevent weeping
- 2 cabinets / 12 stages of separation

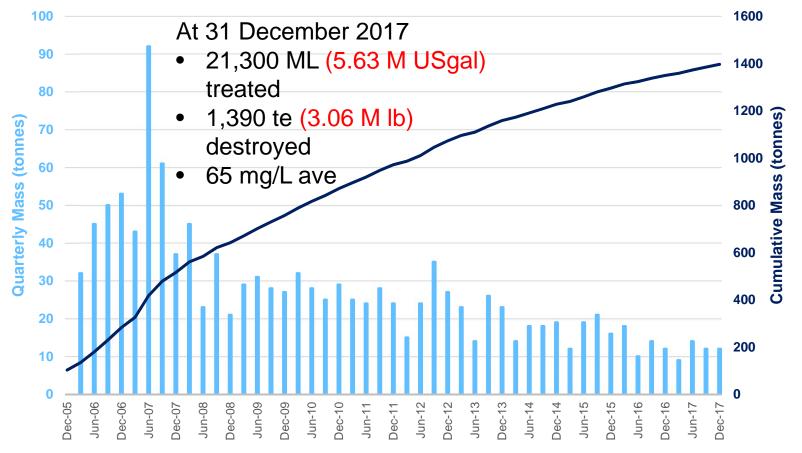
AIR STRIPPING VOC FROM GROUNDWATER

- Fungal fouling
 - pH optimisation
 - short run times
- Chlorine dioxide dosing introduced 2009/10
 - longer run times
- >100 <u>mg/L</u> feed to
 < 10 <u>ug/L</u> volatile CHCs

THERMAL DESTRUCTION OF VOC AND GAS SCRUBBING

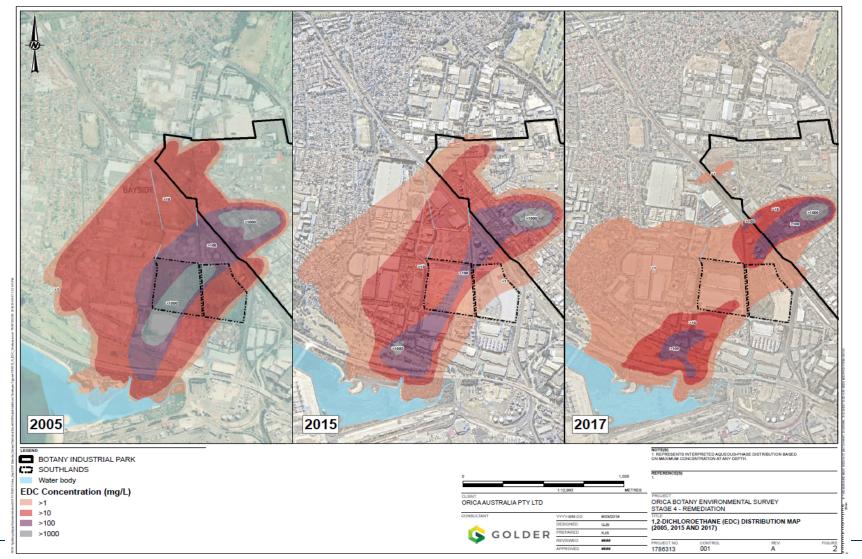
- Refractory damage
 - Liquid droplets in air stripper off-gas contain sodium
 - Introduction of CIO₂
 - Thermal cycling ~ 25 events p.a.
 - improved operations
 - reviewed instrumented trips
- Dioxins
 - Liquid droplets catalysed 'de novo' synthesis
 - Removal of top tray from air stripper
 - 12 to 11 stages

STRIPPED WATER TREATMENT – CHLORO-PHENOL REMOVAL


- Granular Activated Carbon (GAC)
 - Downflow configuration, lead/lag
- Biological fouling of downstream filters and RO units
- Adsorption (physical) to biological
- 5 GAC beds converted to Biological Aerated Filters (BAFs)
 - Co-current upflow
 - 30% removal of Cl-phenol
 - 80% removal of acetate
 - Small removal of ammonia
- Backwash and aeration critical
- Ca(NO₃)₂ added to control H₂S formation and microbially-induced corrosion

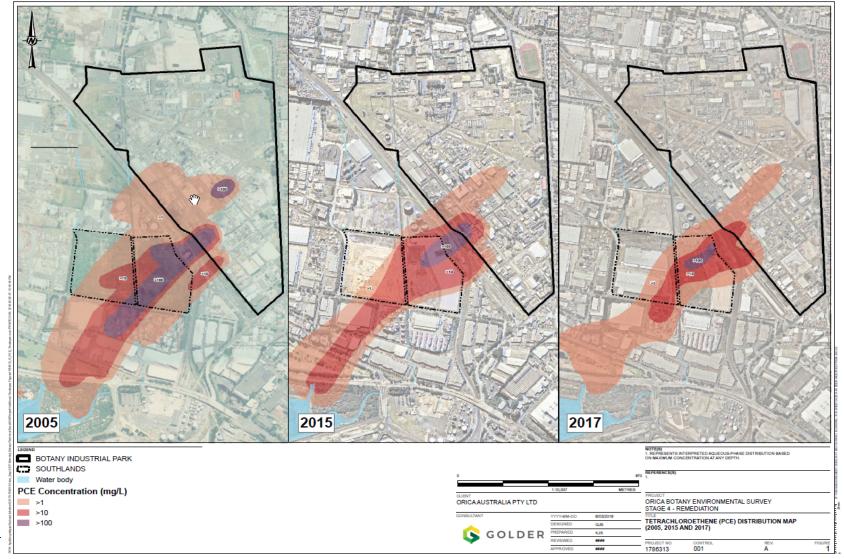
CLEANUP PERFORMANCE - OVERALL

MASS OF CHLORINATED HYDROCARBONS DESTROYED IN GTP

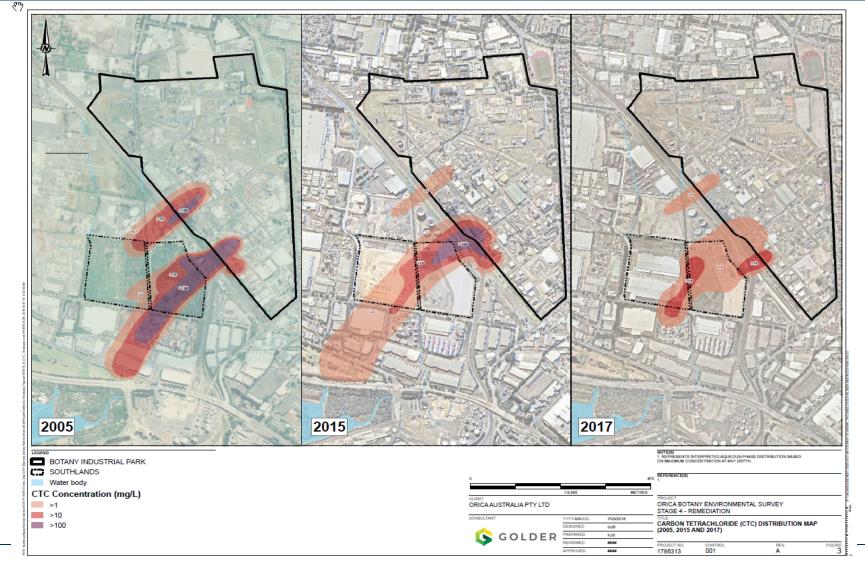


CLEANUP PERFORMANCE – OTHER BENEFITS

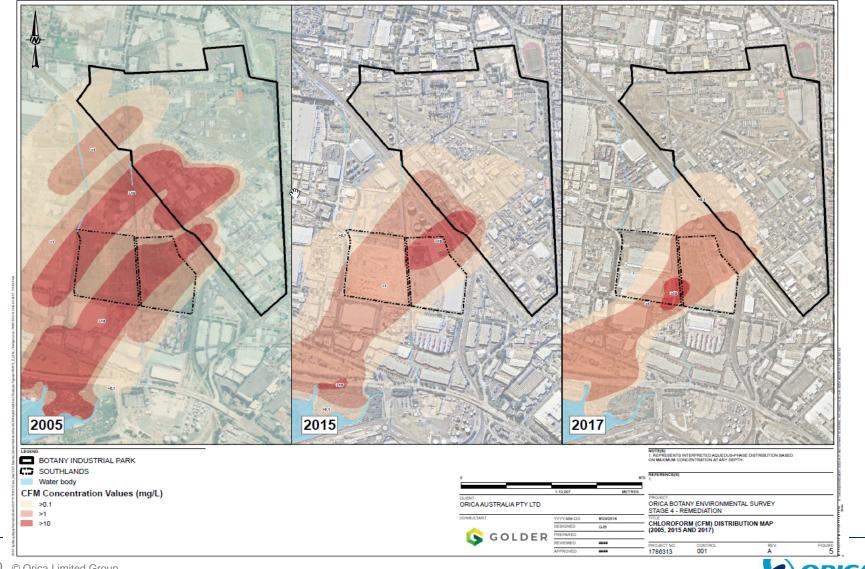
- Surface water quality immediate
- Shallow groundwater over time
- G Dasey presentation



CLEANUP PERFORMANCE – 1,2 DCA (EDC)



CLEANUP PERFORMANCE – PCE



CLEANUP PERFORMANCE – CTC

CLEANUP PERFORMANCE – CFM

20 © Orica Limited Group

ORICA

PUMP AND TREAT

- Notice of Clean Up Action issued by NSW EPA in September 2003
 - Required
 - > Hydraulic containment
 - > Ex situ treatment
 - > Source area removal
 - > Groundwater cleanup plan
- Groundwater Treatment Plant and hydraulic containment network
 - Construction in 2004 and 2005
 - Groundwater feed in January 2006
 - 3 containment lines; 113 pumping wells
 - ~6 ML/d (~1.6 M USgal/d) treatment,
 ~4.5 ML/d (~1.2 M USgal/d) treated
 water for non-potable reuse
- Parallel evaluation of source remediation technologies

SOURCE REMEDIATION

- Source remediation technologies evaluated:
 - Direct recovery (bailing/pumping)
 - > On-site trials \rightarrow very little free product to recover
 - Hydraulic displacement (flushing)
 - > Desktop review \rightarrow rejected as ineffective
 - Surfactant-enhanced in situ chemical oxidation (SISCO)
 - Laboratory column tests with sodium persulfate and different activation methods
 - surfactant was too effective the oxidant couldn't keep up with the solubilised contaminants
 - Thermal steam enhanced extraction (SEE) and thermal conductive heating (TCH)
 - > Hydraulic isolation critical to effectiveness

SOURCE REMEDIATION (CONT)

- Remediation technologies proposed for field trials:
 - In situ chemical oxidation (ISCO)
 - Thermal steam enhanced extraction (SEE) and thermal conductive heating (TCH)
 - Both trials would be very expensive >\$5 million each
- In 2006/7 Orica reviewed the cleanup strategy
 - Mass estimate and solute transport model
 - > cleanup duration under a number of scenarios
 - Workshop convened, including international experts
 - > doubts expressed about efficacy of both technologies at BIP
 - Independent expert report commissioned:
 - > full-scale application of technologies would cost \$250-400M
 - scale, technology and access issues mean incomplete removal
 - > questionable improvement in estimated cleanup duration
 - > adaptive approach better

CURRENT STRATEGY

- Continued extraction and treatment
 - Effective management of all exposure pathways
 - Extensive monitoring and reporting
- Conduct ongoing review of developments in remediation technologies and techniques and their practical applicability
 - Convene a Strategy Review Workshop every three years:
 - a minimum of three international experts in the field, Orica's consultants, NSW EPA and community's monitoring committee
 - > review cleanup progress
 - > consideration of worldwide developments in technology
 - any current or emerging technologies that are likely to provide a practicable solution and justify the conduct of field trials
 - recommendations into Orica's work plans

CURRENT STRATEGY (CONT)

- To date there have been four Strategy Review Workshops
 - Most recent was in February 2017
 - Key conclusions:
 - "pump and treat" remains the most effective way to manage the groundwater contamination
 - there are currently no other cleanup technologies available that warrant further investigation via field trials
 - more characterisation of the contamination source areas is required → source flux depletion
 - more work to close gaps in understanding fate and transport of contamination
- Feasibility study of Moving Bed Biofilm Reactor (MBBR)
 - lower feed concentrations \rightarrow smaller equipment sizes
 - replaces air strippers/thermal oxidiser
 - > major reduction in gas and electricity usage and greenhouse gas emissions

QUESTIONS?

