AN ITERATIVE APROACH TO IMPROVE MODEL PREDICTIONS AND SITE CONCEPTUAL MODELS

Al Laase, Navarro Research and Engineering

Grand Junction, Colorado laase@navarro-inc.com

James O. Rumbaugh III (Environmental Simulations, Inc. Leesport, PA, USA)

James Stening (Orica Pty Ltd, Botany, NSW, Australia)

Orica Modeling Tenets Why Model?

- Understanding
 - Site conceptual model development
 - Parameter sensitivity evaluation
 - Remedial strategy comparison
- Predictions
 - Plume trends and duration
 - Remedial design performance
 - Capture zone evaluation

Model prediction shortcomings guide conceptual model revisions

- Orica Botany site is located south of Sydney, Australia
- More than a century of industrial operations by multiple companies in the area have contaminated the Botany Aquifer with a variety of chemicals
- ICI Australia/Orica have been in operation for approximately 70 years at the Botany site
- In 2005 a remedial extraction well field consisting of 113 extraction wells pumping a cumulative 7 ML/d became operational
- Focus of this presentation is 1,2-dichloroethane (1,2-DCA)

Conceptual Model

2007 Transport Model

- Source areas are active and source loading is declining at an uncertain rate
- K_d is homogeneous
- Degradation occurs but is limited due to high contaminant concentrations (assume 1500 day degradation half life)

Observed

Conceptual Model Model Calibration Model Predictions

Observed

- 2007 Transport Model
 - Used transient groundwater model as basis for transport simulations
 - Calibrated the model to 347 concentration measurements collected at 48 locations between 1990 and 2004
 - Calibrated 36 source area temporal loading rates from inception through 2004 using super position techniques
 - Assumed fixed attenuation rate and K_d

PEST used to calibrate transport model

Conceptual Model • 2007 Transport Model

- Simulated a variety of source remediation scenarios for combinations of extraction wells and reactive barriers
- Depending on the timing and % reduction in the source area loading rates, ≤0.1 mg/L concentrations could be achieved as soon as 2055 everywhere in the aquifer
- Likely scenario was many 100s of years would be required to achieve ≤0.1 mg/L everywhere in the aquifer

Conceptual Model

Model Predictions

Constant Source Term

Model Layer	January 2005 EDC Plume Mass, kg	September 2013 EDC Plume Mass, kg	Difference, kg	Difference, %
1	65,220	92	65,128	99.9
2	190,220	10,012	180,208	94.7
3	669,760	57,079	612,681	91.5
4	647,469	116,266	531,202	82.0
TOTAL	1,572,668	183,449	1,389,219	88.3

Conceptual Model 2013 Transport Model

- Source areas are active and source loading is declining at an uncertain rate
- Kd is homogeneous
- Degradation rate is unknown but is
 <1500 days

Conceptual Model

2013 Transport Model

- Used transient groundwater model as basis for transport
- Calibrated the model to 671 concentration measurements collected at 48 locations between 1990 and 2013
- Calibrated constant loading rates for 36 source area
- Calibrated individual degradation rates for each model layer

Model Calibration Model Predictions Observed

PEST used to calibrate transport model

Conceptual Model

Model Predictions

- 2013 Transport Model
 - Calibration resulted in degradation half lives of:

Model Layer	Degradation Half- Life, days
1	25
2	175
3	500
4	625

 With the exception of the source areas, ≤0.1 mg/L concentrations could be achieved as soon as 2030

Conceptual Model

Model Calibration

- **Model Predictions**
 - **Observed**

- 2013 Transport Model
 - Source area concentrations are declining; assumption that source area concentrations are constant is not realistic
 - Calibrated degradation half lives are much faster than previously characterized at the site

Conceptual Model

2016 Transport Model

 Source area loading can be characterized by:

$$C(t) = C_0 e^{-kt}$$

- Geosyntec characterized the expected k range for individual source areas
- K_d is possibly different for each of the four model layers

Conceptual Model Model Calibration Model Predictions Observed

- 2016 Transport Model
 - Used transient groundwater model as basis for transport
 - Calibrated C_o and k for 36 source area
 - Calibrated individual degradation rates and K_d for each model layer
 - Used BEOPEST to perform calibration in parallel

PEST used to calibrate transport model

Conceptual Model

Model Predictions

2016 Transport Model

- Calibrated targets included:
 - 671 concentration measurements collected at 48 locations between 1990 and 2013
 - Temporal mass removed at the treatment plant
 - 2013 bulk plume statistics for each model layer:
 - Dissolved mass
 - Plume volume
 - Concentration distribution statistics

PEST used to calibrate transport model

Conceptual Model

Model Calibration

Model Predictions

2016 Transport Model

Model Layer	Observed EDC Plume Mass, kg	Model- Predicted EDC Plume Mass, kg	Difference, kg
1	92	960	-868
2	10,814	11,617	-803
3	57,079	12,339	44,740
4	116,266	145,446	-29,180
TOTAL	184,251	170,362	13,889

Conceptual Model

Model Calibration

Model Predictions

- 2016 Transport Model
 - Calibration resulted in degradation half lives of:

Model	Degradation Half-Life, days		
Layer	2016	2013	
1	145	25	
2	593	175	
3	952	500	
4	784	625	

- Time to ≤0.1 mg/L
 - 2016 transport model 2055
 - 2013 transport model ≥2030

Model Calibration

Model Predictions

Observed

2016 Transport Model

- Based on discrepancies between layer 1 and 3 modeled and observed plume mass, studies are being undertaken to characterize the spatial distribution of K_d and degradation half lives within the aquifer
- Additionally, the study results will confirm the representativeness of the calibrated half lives.
- Results of the studies will be used to update the next transport model

Questions?