Eliza Kaltenberg, PhD Lisa Lefkovitz, PMP

Battelle

12 April 2018

Polyethylene Devices (PEDs):

Customizable Tools for Unique Applications in a Variety of Environmental Scenarios

Case Study:

PCB-contaminated estuarine harbor

• Site:

- estuarine harbor contaminated with high levels of PCBs
- tidally influenced; salinity ~30 ‰; water depth 4 -10 feet

• Project goal:

- Aid remedy design
- Collect porewater and surface water PCB data and calculate diffusive PCB flux

• Research goal:

- Conduct in situ vs. ex situ passive sampling comparison
- Investigate reproducibility of the in situ and ex situ results

Methods - PEDs preparation

- Made from 25 µm-thick low-density polyethylene sheets
- Cut to 40 x 14 cm size and cleaned
- Spiked with performance reference compounds (PRCs); 2 PEDs per batch retained at the lab to determine PRC concentration at t = 0
- Framed, then wrapped for transport to the site

Methods - deployment

In situ PEDs:

- PEDs deployed at 22 sites (plus 3 field duplicates)
- Deployment time: 34 days

Ex situ PEDs:

- Sediment grabs collected from 18 co-located stations
- Size of PED selected to provide minimal depletion
- Lab exposures conducted by sediment slurry method in jars agitated on an orbital shaker

Methods – retrieval and sample prep

- PEDs from field deployments: retrieved, rinsed, photographed, shipped to the lab. At the lab: photographed, cleaned, subsectioned, extracted.
- PEDs from lab exposures: retrieved, cleaned, extracted.

Methods – data analysis

- PED extracts analyzed in Battelle's Norwell, MA lab for 139 PCBs using modified EPA method 8270D
- Lab results (*C_{PED}*) reported in ng/g-PED
- Sampling rate (Rs) model used to determine DEQ for each congener based on the loss of PRCs:

 $DEQ = 1 - f_{MODELED}$

• Dissolved water concentration (C_d) calculated for each congener as:

$$C_d = \frac{C_{PED}}{K_{PED} \ DEQ}$$

Results – measurement variability

• Equilibrium achieved for all lab exposures but not for field exposures

Results – diffusive flux

Where:

e water column)
4)),
ED data)
data)

Results – diffusive flux

Flux of PCBs (mg/m²/yr)

Positive; from sediment to surface water

Results – in situ vs ex situ

Case Study – Summary

- PEDs used in remedy design to provide information on the concentration and flux of freely dissolved hydrophobic contaminants.
- **Ex situ** (lab) offer **comparable** results to in situ exposures and can be used when in situ deployments are difficult or risky due to significant water depths or high boat traffic.
- Ex situ exposures allow more cost-effective determination of site average contaminant concentration through compositing of sediment grab samples.

Other applications

- Improved DLs allow forensics/fingerprinting
- Combined for site investigation

Summary – Application of PEDs

Benefits

- Measures only freely dissolved (most bioavailable) contaminants
- Easily adjustable shape and size; robust
- Better detection limits than water sampling; inexpensive
- Time-averaged results

Applications

- Measurement of hydrophobic contaminants in surface water, groundwater, porewater
- Diffusive flux calculation for remedy design and/or monitoring
- Source tracking and forensics

Assumptions

- Known partition coefficients
- PRCs present analogous properties to analytes and allow determination of fractional equilibration

Mass transfer models

- First order simplest, for surface water.
- Diffusion for porewater only (surface water coming soon); 0.1>PRC DEQ>0.9
- Sampling rate (Rs) used in this study; suitable for porewater and surface water

QUESTIONS?

kaltenberg@battelle.org

It can be done

800.201.2011 | solutions@battelle.org | www.battelle.org