

Management of PAH and NAPL-Impacted Dredge Residuals – Former MGP Site, Portland Harbor Superfund Site V ANCHOR QEA

Ryan Barth, PE February <u>12, 2019</u>

Ryan Barth, PE, Holly Samaha, PE

Bob Wyatt

Dredge Residual Definitions

- Undisturbed residuals
 - "Missed inventory" beneath the dredge design
 - Higher site heterogeneity and limited pre-design characterization increases potential
- Generated residuals
 - Sediments disturbed but not captured by the dredge
 - Migration can lead to recontamination and off-site impacts

Residuals Management – Background

- Residuals can affect cleanup performance metrics
 - Residuals happen
- Proactive management of residuals during design and construction drives optimal close-out strategies
 - Account for during *both* dredge and cover design
 - Dredging techniques, equipment, and BMPs selection
 - Couple post-dredge sampling with design response measures
 - Account for dredging sequencing to minimize recontamination
 - Account for the presence of NAPL and associated elevated residuals concentrations and mobility

Former MGP Gasco Site – Background

- 2004 NW Natural executed Order with EPA for early action
- 2005 NW Natural performed early action (dredge and cap)
- 2009 NW Natural executed Order with EPA for design
- 2012 NW Natural submitted Engineering Evaluation/Cost Analysis
- 2017 EPA ROD identified combination of dredging and capping and requirement to address mobile NAPL
- 2018 EPA and NW Natural worked collaboratively to establish a clearly defined residuals management framework

Residuals Management Framework Goals

Establish bases for key design elements Target single dredge pass

Minimize uncovered residuals duration

Minimize recontamination on DMU and seasonal basis Assess missed inventory for chemical and NAPL Field verify cover design is protective and modify, if necessary

Residuals Management Framework Elements

Dredge Design	Dredging Construction	Post-Dredge Verification and Closeout Process	Cover Verification and Closeout Process
High density sampling and constructible dredge areas informed by dredge duration	BMPs and equipment selected to minimize residual generation and migration	Bathymetry and post- dredge cores to assess missed inventory, generated residuals, and NAPL	Field verify cover design and implement multi-layer, sequenced cover placement

Post-Dredge Verification and Closeout Approach

Post-Dredge Missed Inventory Verification Approach

Existing Mudline

Design Post- Dredge Surface		Sample Type	Sampling Sequence
	Residuals		1
	6 inches		1
	6 inches		1
	6 inches	Core	2 (Archive)
	6 inches		3 (Archive)
	6 inches		4 (Archive)
	6 inches		5 (Archive)
	6 inches		6 (Archive)

Threshold Concentration for Measured Residuals

2 inches Second 6-Inch Cover **RMC Placed** 2 inches Cover at End of 2 inches Cover Season First 6-inch 2 inches Cover **RMC** Placed 2 inches Cover Expeditiously 2 inches **15% Residuals Mixing** Post-Dredge Operationally Defined as 6 inches **Residuals** 6 Inches – **Field Verified Sediment**

Calculation of Residual Threshold Concentration

% Mixing $\times \frac{\text{Mixing Zone}}{\text{Cover}} \times [\text{Threshold Conc.}] = \text{TPAH Cleanup Level}$

$$0.15 \times \frac{2}{12} \times [\text{Threshold Conc.}] = 23 \text{ ppm TPAH}$$

∴ [Threshold Conc.] = 920 ppm TPAH

Cover Verification and Closeout Approach

Conclusions

- Residuals happen account for over project life cycle
- Five-step post-dredge verification and closeout approach
 - Minimizes uncovered residuals duration
 - Field verifies and triggers pre-defined management options for missed inventory and NAPL
 - Provides clear endpoint for dredging completion
- Four-step cover verification and closeout approach
 - Field verifies protectiveness of RMC design
 - Manages residuals on both DMU and seasonal basis
 - Provides clear endpoint for cover completion
 - Allows for sequential application of multiple layers of RMC
 ANCHOR ANCHOR ANCHOR
 14

Questions/Discussion rbarth@anchorqea.com

