

STRUCTURED DESIGN PROCESS IMPROVEMENT FOR COMPLEX SEDIMENT SITES

February 12, 2019

Improving quality of life.

Presenter

MICHAEL J. ERICKSON, P.E.

National Expert/Senior Vice President – Sediment Remediation Practice

- 734-604-7044
- michael.erickson@arcadis.com

Contributors

RHIANNON FABER, P.E ALAIN HEBERT, P.E

0

е

Overview

- Complex site design challenges
- Our design philosophy
- What does a defined process look like in practice?
 - Design Principles
 - Information Management Plan
- Lessons learned process improvements

Complex Site Design Process Challenges

- Avoiding opportunity costs of incomplete pre-design planning
- Avoiding remedial design (RD) schedule jeopardy associated with team awareness and communication
- Consistent application of design principles and adaptive management

Our Design Philosophy

- Design <u>must follow content</u> of the Record of Decision (ROD) and implementing agreements
- Design <u>approach should not be constrained</u> by the feasibility study, ROD and implementing agreements
- Flexibility and uncertainty are to be embraced in design adaptive design leads to innovation and optimal designs
- High team member awareness of design strategy and effective inter-team communication is key to high performing design teams

These ideas and experience led us to a more defined planning process

What Does a Defined Design Process Look Like in Practice?

Design Process Types

Tools to Complement the Defined Design

Typical RD Work Plan Content	Design Tools Typically Not Identified by RD Agreements

- QAPP
- Project Management Plan
- Pre-Design Investigation Plan
- RD Work Plan
- Design Criteria
- Basis of Design Report (BODR)
- 30 Percent Design (PD)
- 60 PD
- 95/Final PD
- Monitoring Plans
- Etc.

- Design Principles
- Information Management Plan (IMP)
 - Design element breakdown
 - Information needs and sources
 - Users
 - Dependencies

IMP Communications Plan

- Team member roles
- Events
- Who, how, when

Design Principles

Design Principles Matrix

- Identifies hierarchy of design choices
- Forces prioritization of potentially conflicting design principles
- Structured to incorporate the Design Criteria, which are developed hand in hand
- Provides a design process verification tool for quality control by back checking that the intended information was applied

Design Principle Examples

Manage structural instability risks and shoreline debris concentrations with dredge limit setbacks based on observed structural condition and debris mapping.

Configure navigational channels to extent possible based on planform to promote selfmaintaining channel forms and reduce dredge volumes.

Define a remedy construction sequence that best facilitates achievement of remedial action objectives.

Information Management Plan

Information Management Plan Purpose

Provides structured management, communication, and availability of information Help define work structure for major design elements Supports major design work elements scheduling

It is not:

- A replacement for the RD Work Plan
- A duplication of the Quality Assurance Project Plan
- An analytical data management process
- A replacement of the milestones schedule

IMP Function

Flow charting of information required for major design elements

Ensure needed information provided to primary users when needed

Ensure task outcomes and information disbursed to Secondary users when needed

Confirms information availability/accuracy/sufficiency to support design schedule and strategy

Consistently communicate design strategy and process at RD Management Team and Task Team levels

Back-checks provide validation to RD Management Team

Design Elements

Set up manageable divisions of design elements.Large projects are likely 8-12 major elements.

Element Design Steps

- Define the major steps target 4 to 6 steps
- Consider splitting the design element if there are too many steps

Element Information Data Needs and Interdependence

- Define the data needed and DUOs for each step
- Develop Work Flow Chart

Identify Critical Paths

- Determine task interdependencies
- Critical when pre-design investigation and design are concurrent

Structured planning adds value in capturing PDI and RD opportunities for efficiency and avoiding delays

Tenth International Conference on Remediation and Management of Contaminated Sediments

Example Design Elements Identification

Chemical Isolation Design Element: Data & Decision Inputs to 30% BODR

Capping Areas (COC Mapping)	2 Isolation Modeling	3 Borrow Material Types	Cap Placement Method	5 O&M Framework
 Sediment chemistry In-river and shoreline structures Refined utility buffer zones NAPL extent / characteristics * Geomorphology Underwater cultural resource 	 Sediment chemistry Groundwater flux and seepage Porewater concentrations * Partitioning coefficients and amendment performance (TS) 	 Borrow material sources * Amendment sources * 	 In-river and shoreline structures Refined utility buffer zones Fish window * Material settling and constructability evaluation (TS) 	Bathymetry
 Initial cap surface (including navigation channel configuration) Intertidal mudflat approach (e.g., dredging vs offsets) Geotechnical restrictions Interpolated COC maps 	 Design criteria Model approach NAPL management approach Assumptions regarding natural habitat layer formation and deposition rates 	 Erosion protection layer types 	 Erosion protection layer types Stabilization layer (dredge design) Sequencing (dredge design) 	 Design criteria Comparison to prior bathymetry for bed elevation change (flood elevation model)
Data & Decision Inputs and Ou July 2018 Available Sediment Chemistry July 2018 Bulkhead/Shoreline Recon July 2018 Utility Survey July 2018 Available Sediment C Aug 2018 Groundwater Flux	May 2018 June 2 Design Criteria Initial (Agreement Surfa Agreement Surfa Agreit hemistry Data	018 Aug 2018 Cap Erosion Protection Layer Types -Aug g Areas June - Sept Isolation Modeling Aug - Sept Borrow Material Types		 * PDI DATA & DECISION INPUTS TO 60% • Bulkhead & shoreline borings • Porewater concentrations • Borrow material sources • Fish study • NAPL
July 2018 Utility Survey 2/1/2018	3/1/2018 4/1/2018 5/1/2018 6/1/2018	€ • • • • • • • • • • • • •	t-Oct entMethod Sept-Oct O&M Framework 10/1/2018 11/1/2018 12/1/2018	Supplemental sediment chemistry TREATABILITY STUDY (TS) INPUTS TO 60% Partitioning coefficients and amendment performance
	l June 20 COC Mappin	I I 18 July 2018 Aug 2018 Aug 20 Draft DCR Capping Chemical Is ig Areas Modeling	I TO MARKAN 18 Oct 2018 Dec 2018 olation Draft BODR Submit BODR JTM DCR to USEP	Material settling and constructability evaluation

IMP Operation

Lessons Learned

Designing the Design Process

- Typical RD implementation agreements are structured to meet agency needs, not the RD team's planning needs
- The design process must be structured beyond the "default", especially for large team, complex site RD delivery
- RD Management Team ability to clearly see and validate the process reduces risk for all participants
- Design Principles matrix, Design Elements work flow charting, and Information Management Plan tools presented here have met these needs

Use of these design process improvements will improve delivery of your complex sediment site remedial design

Arcadis. Improving quality of life.

