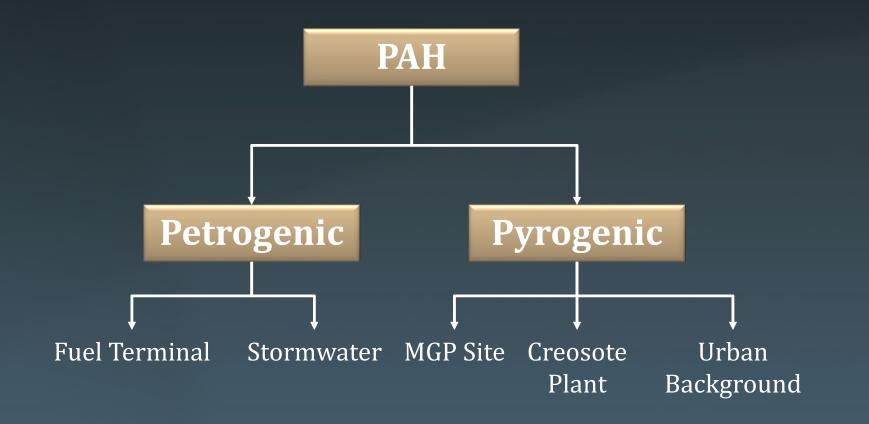
## **Improving Rigor in Polycyclic Aromatic Source Fingerprinting**

William L. Goodfellow, Jr. (wgoodfellow@exponent.com) Paul D. Boehm (pboehm@exponent.com) Linda L. Cook (lcook@exponent.com) Jaana Pietari (jpietari@exponent.com) Tarek Saba (tsaba@exponent.com)

#### Boehm et al. (2018) Environmental Forensics. 19:172-184




#### Key Message

Source identification of polycyclic aromatic hydrocarbons (PAH) in environmental samples has advanced greatly in the last 20 years. To realize potential benefits and avoid possible pitfalls, care is needed as one applies published diagnostic tools to available data sets.

Using PAH data collected for another purpose in a forensic evaluation may be like trying to fit a square peg in to a round hole.



## The Challenge: Characterizing the Contribution of Multiple PAH Sources





#### The Problem(s)



- The Problem is rooted in suboptimal 1) sampling,
  2) analytical chemistry, and 3) data analyses
- For Sites and Spills...
- Sampling: Samples that don't fit the question
  - Non-representative source samples
    - Literature vs. site-specific
    - Incomplete set of potential sources
  - Non-representative site samples
    - Parts of site vs. whole area in question
    - Snapshot in time vs. historical representation



### The Problem(s)

- Analytical chemistry that falls short of adequate information
  - PAH analyte lists that are truncated
  - Detection limits that are too high
  - Inappropriate treatment of non-detects
  - Data from various labs and/or collected over time ... combined without analysis
- Data analyses that don't align with the questions, are based on flawed data sets, or are applied without rigor (e.g., based on someone's paper)



### Sampling: The Foundation of a Good PAH Forensic Investigation

- Three key elements:
- Source Samples
  - Representative of known sources and/or source areas in the time frame of interest
- Site samples



Representative in the time frame of interest

Background samples

The chemical concentrations <u>and</u> <u>compositions</u> "but for" a release



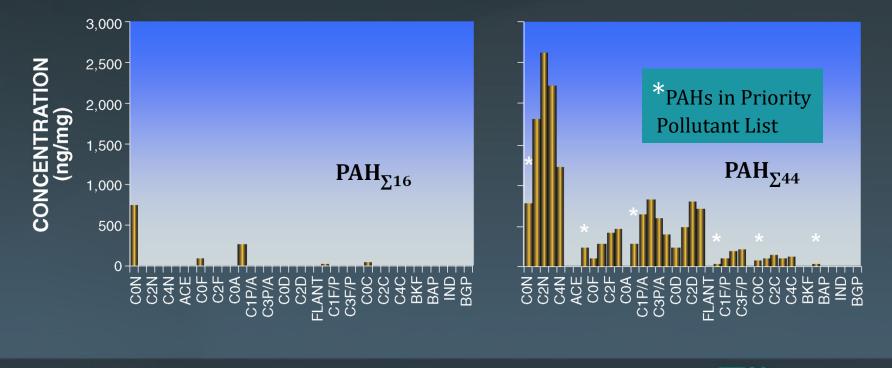
## PAH Forensic Chemistry Requires a Specific Set of Target Analytes

EPA's list of 16 PAHs may be insufficient.

- ∑PAH<sub>16 or 17</sub> a regulatory screening list
- ΣPAH<sub>44 or 50</sub> the forensics list

**Table 15.4.1** Comparison of PAH Analytes Commonly Used in Environmental Forensic Investigations ( $\Sigma PAH_{50}$ ) to the US EPA "Priority Pollutant" List ( $\Sigma PAH_{16}$ )

| Analyte/Analyte Group        | Abbr. | Analyte/Analyte Group    | Abbr. |
|------------------------------|-------|--------------------------|-------|
| Naphthalene                  | N0    | Pyrene                   | PY    |
| C1-naphthalenes              | N1    | C1-fluoranthenes/pyrenes | FP1   |
| C2-naphthalenes              | N2    | C2-fluoranthenes/pyrenes | FP2   |
| C3-naphthalenes              | N3    | C3-fluoranthenes/pyrenes | FP3   |
| C4-naphthalenes              | N4    | Benz(a)anthracene        | BaA   |
| Biphenyl                     | Bph   | Chrysene                 | C0    |
| Acenaphthylene               | Acl   | C1-chrysenes             | C1    |
| Acenaphthene                 | Ace   | C2-chrysenes             | C2    |
| Dibenzofuran                 | DbF   | C3-chrysenes             | C3    |
| Fluorene                     | F0    | C4-chrysenes             | C4    |
| C1-fluorenes                 | F1    | Benzo(a)fluoranthene     | BaF   |
| C2-fluorenes                 | F2    | Benzo(b)fluoranthene     | BbF   |
| C3-fluorenes                 | F3    | Benzo(j,k)fluoranthene   | BkF   |
| Anthracene                   | AN    | Benzo(e)pyrene           | BeP   |
| Phenanthrene                 | P0    | Benzo(a)pyrene           | BaP   |
| C1-phenanthrenes/anthracenes | P1    | Perylene                 | Per   |
| C2-phenanthrenes/anthracenes | P2    | Indeno(1,2,3-c,d)pyrene  | ID    |
| C3-phenanthrenes/anthracenes | P3    | Dibenzo(a,h)anthracene   | DA    |
| C4-phenanthrenes/anthracenes | P4    | Benzo(g,h,i)perylene     | BgP   |
| Dibenzothiophene             | D0    | Dibenzo (a,e) pyrene     | DeP   |
| C1-dibenzothiophenes         | D1    | Dibenzo(a,h)pyrene       | DhP   |
| C2-dibenzothiophenes         | D2    | Dibenzo(a,l)pyrene       | DlP   |
| C3-dibenzothiophenes         | D3    | Dibenzo(a,i)pyrene       | DiP   |
| C4-dibenzothiophenes         | D4    | Dibenzo(a,e)fluoranthene | DeF   |
| Fluoranthene                 | FL    | Anthanthrene             | Α     |


bold - 16 Priority Pollutant PAH

(Boehm 2006)




## **Comparison of PAH Analysis of Same Crude Oil Sample Using Two Target Lists**

- Standard analysis of the EPA priority pollutant PAHs ("Regulatory List") yields only a small fraction (10-30%) of the total PAH content
- Truncated regulatory PAH lists create vulnerabilities



### PAH<sub>44</sub> Provides Foundation to Better Differentiate Petroleum and Pyrogenic PAH <u>Source Profiles</u>

Unobtainable by regulatory lists (PAH<sub>17</sub> or PAH<sub>34</sub>)



## Using Literature Values for Source Types is Convenient, But Can Be Flawed.

• Use of literature derived source profiles for different categories of source types.







• Use of site specific data from potential local sources.



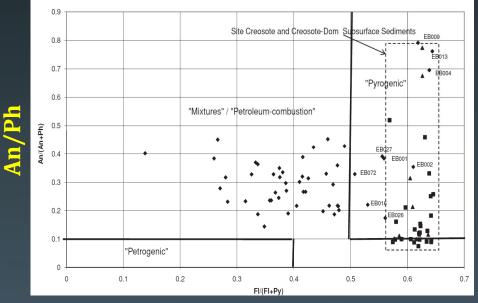




#### **Problems with published PAH profiles**

- PAH profiles vary with fuel type, combustion conditions, temperature, and other factors.
- Too few examples to characterize variability.
- Some historical data are available only as averages, so the actual profiles are not reviewable.
- Different averaging approaches have been used.
- Changes in profiles due to photo-oxidation and other weathering processes are ignored.




#### Weathering Results in Shifting PAH Profiles

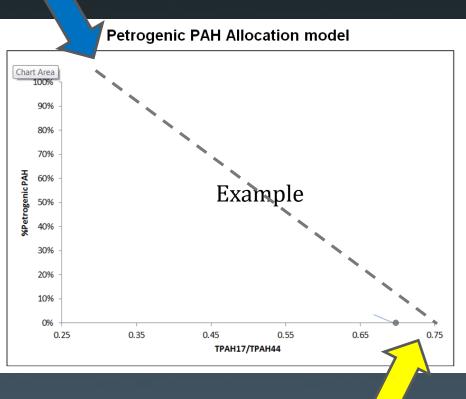
- The loss of lighter more degradable PAH compounds will cause a shift in the source profile
- Can be a challenge to differentiate weathering effects from multiple sources
- Weathering will not cause a pyrogenic profile to change into a petrogenic profile.
- Solution: Run forensic evaluation methods with different combinations of PAHs, eliminating lighter ones, to assess the influence of weathering on results and interpretations.



#### **Be Leary of Ratios of Convenience**

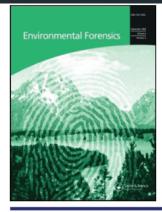
While double ratio plots can be a useful tool for comparing samples within a sample set, comparison with published ratios has limited value for specific source identification.




Fl/Py

From: Zemo 2009




## Real Value in the Interplay of $\Sigma PAH_{17}$ and $\Sigma PAH_{44}$ Petrogenic End Member

- Need both
- Pyrogenic PAH  $\equiv \Sigma PAH_{17}$
- Petrogenic PAH  $\equiv \Sigma PAH_{44}$
- Ratio ΣPAH17/ΣPAH44 is an excellent tool
- Higher for samples with a pyrogenic origin; and lower for samples of petrogenic origin



**Pyrogenic End Member** 

## Data Analysis Issues: Problems of High Detection Limits = Non Detects



#### **Environmental Forensics**

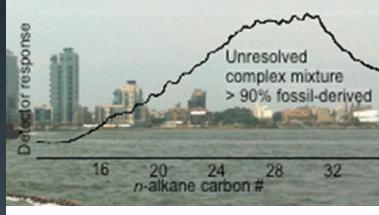
ISSN: 1527-5922 (Print) 1527-5930 (Online) Journal homepage: http://www.tandfonline.com/loi/uenf20

## Cautions on the treatment of non-detect results for environmental forensics

Mihai Aldea, Melanie Edwards, Jaana Pietari & Paul Boehm



Taylor & Francis Taylor & Francis Group


#### **Data Analysis Issues – Non Detects**

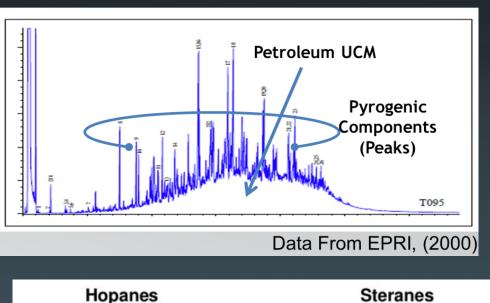
- Substituting values for NDs on multivariate analyses greatly increases the potential for incorrect conclusions about the true forensic features within the data
- In some cases, removal of variables and/or samples with high degrees of censoring resolves this challenge
- But best approach is to lower detection limits

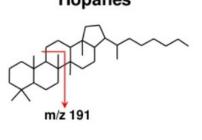


## PAH Forensics is Enhanced through Other Chemical Lines of Data/Evidence

• Gas Chromatograms







| Article          |
|------------------|
| pubs.acs.org/est |
|                  |

Unresolved Complex Mixture (UCM) in Coastal Environments Is Derived from Fossil Sources

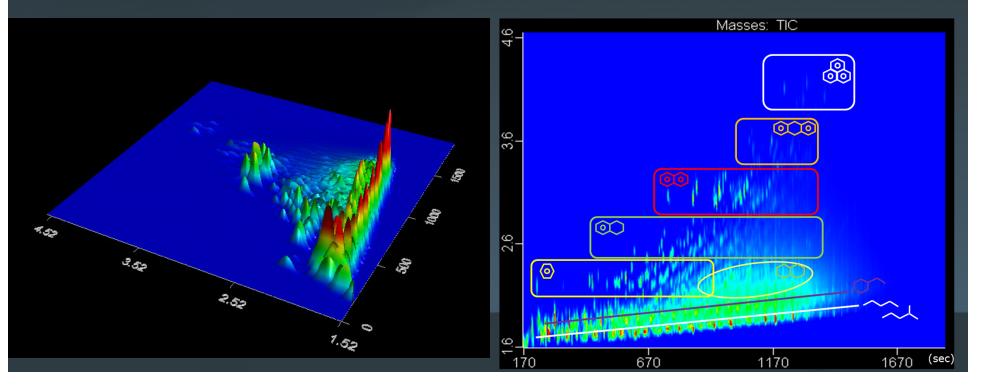
- Helen K. White,\* $^{*}$  Li Xu, $^{\ddagger}$  Paul Hartmann, $^{\$}$  James G. Quinn,  $^{\parallel}$  and Christopher M. Reddy  $^{\perp}$
- Petroleum Biomarkers

   Petrogenic sources rich in biomarkers





M⁺ → m/z 191


m/z 217

 $M^{++} \rightarrow m/z \ 217$ 



## Analytical Advances <u>May</u> Improve Forensic Evaluations

- Two dimensional chromatography better separates compounds in complex mixtures.
- Rigorous methods of incorporating the results are under development.



#### Use of Statistical Receptor "Mixing" Models

- Receptor models are tools for characterizing potential sources and quantifying their contribution.
- Examples: CMB, PVA, UNMIX, PMF etc.
- While, powerful and versatile, careful application necessary

| Σισό σποιοιαία Ρονοικος 11:225-231, 2012<br>Copy of the Φ Topice & Faccio Georg, LLC<br>Σ5541: 1527-2527 μρτί / 1527: 3500 υπόμα<br>DCI: 10. 1069/1521: 3922.2012.20235.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Taylor & Francis<br>teleristeec/me                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contributed Articles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                 |
| Sediment PAH Allocation Using Parent PAH Proportio<br>and a Least Root Mean Squares Mixing Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ns                                                                                                                                                                              |
| Kurt Herman, Eric J. Wanramaker, and Gautham B. Jegadeesan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                 |
| Integrated Environmental Assessment and Management — Volume 10, Number 2—pp. 279–285<br>© 2013 SETAC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 279                                                                                                                                                                             |
| Parsing Pyrogenic Polycyclic Aromatic Hydrocarbons<br>Forensic Chemistry, Receptor Models, and Source Co<br>Policy<br>Kirk T OReilly.* J Jana Pietari, J and Paul D Boehm J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                 |
| i Exponent, Belevue, Washington, USA<br>i Exponent, Belevue, Washington, USA<br>i Exponent, Maynard, Massachusetts, USA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                 |
| Polycyckie Annuske Compoundt, 354 1-55, 2015<br>Copyright@ Taylor & Francis<br>Listic VaderBaylor J Die Joshe volkee<br>DOI: 10.10490104058620 MS070H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Case Study                                                                                                                                                                      |
| Use of Receptor Models<br>to Evaluate Sources of PAHs<br>in Sediments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tudy<br>noalanstis                                                                                                                                                              |
| Kirk T. OʻReilly, <sup>1</sup> Sungwoo Ahn, <sup>1</sup> Jaana Pietari, <sup>2</sup><br>and Paul D. Boehm <sup>2</sup><br><sup>1</sup> Esponent, Bellerue, Washington, USA<br><sup>2</sup> Esponent, Maynard, Masschusetts, USA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e of<br>f the<br>N                                                                                                                                                              |
| Expensity integration parameters, income and the second problem of | and<br>and<br>s of<br>have<br>nic)-<br>let of<br>genic<br>genic<br>have<br>mis-<br>AH-<br>lars<br>J999;<br>and<br>and<br>jete<br>bit is<br>atthe<br>the<br>the<br>bits<br>s are |
| $K_{\rm NV}$ Words: P&H, pavement sealer, receptor models, sediments, source control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ions.<br>ed by<br>s the                                                                                                                                                         |
| INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nicals                                                                                                                                                                          |
| Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous constituents in urban<br>sediments that are generally negulated as toxic and as potential carcinogens<br>(1). Therefore, PAHs are of interest to both environmental scientists and policy<br>makers. As a class of compounds with profiles that differ by source, they lend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                 |
| Received 29 January 2014; accepted 20 March 2014.<br>Address correspondence to Kirk T. O'Reilly Exponent, 15375 SE 30th Place,<br>Bellevue, WA 98007. E-mail: koreilly@septent.com<br>41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                 |
| τγ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                 |

# Do Not Ignore the Underlying Assumptions of Mixing Models

- 1. All potential sources have been identified
- 2. Source profiles are known and stable
- **3**. The number of sources is less than the number of fitting species
- **4.** Source profiles are linearly independent of each other
- **5**. Measurement uncertainties are random, uncorrelated, and normally distributed.



#### Conclusions

- Environmental forensics provides powerful tools for characterizing and quantifying source of PAHs.
- Forensic methods are not plug and play but require technical rigor and integration of sitespecific information for proper implementation.



#### References

Boehm PD. 2006. Polycyclic aromatic hydrocarbons. In *Environmental Forensics — A Contaminant Specific Guide*. Eds. BL Murphy and RD Morrison: Cambridge, MA, USA: Elsevier, Academic Press, 313–337.

Boehm et al. 2018. Improving Rigor in Polycyclic Aromatic Source Fingerprinting. *Environmental Forensics*. 19(3):172-184

Stout SA, Uhler AD, Boehm PD. 2001. Recognition of and allocation among sources of PAH in urban sediments. *Environmental Claims Journal* 13(4):141–158.

Van Metre PC, Mahler BJ. 2010. Contribution of PAHs from coal-tar pavement sealcoat and other sources to 40 U.S. lakes. *Science of the Total Environment* 409:334–344.

Venkataraman C, Lyons JM, Friedlander SK. 1994. Size Distributions of Polycyclic Aromatic Hydrocarbons and Elemental Carbon. 1. Sampling, Measurement Methods, and Source Characterization. *Environmental Science & Technology* 28(4):555–562.

Zemo DA. 2009. Use of parent polycyclic aromatic hydrocarbon (PAH) proportions to attribute PAH sources in sediments: A case study from the Pacific Northwest. *Environmental Forensics* 10(3):229–239.

