Louis Berger

Use of Forensic Methods to Identify Sources of Elevated PAH Concentrations in Sediments from Urban Tidal Waterbodies

Louis Berger, Morristown, NJ, USA Ying Wang (ywang@louisberger.com) Solomon S. Gbondo-Tugbawa Edward A. Garvey

HDR, White Plains, NY, USA Chitra Prabhu

New York City Department of Environmental Protection, NY, USA Ron Weissbard Eileen Mahoney

louisberger.com

NAPL Migration Due to Ebullition

NAPL Migration from Upland Sites

Source inputs evaluated in this work

Conceptual Site Model

- Concentration
- Mass Fraction Pattern
- Source Ratio
- Principal Component Analysis
- Other Source Indicators

Approach

Name	Abbrev	Ring	MW	Name	Abbrev	Ring	MW
Naphthalene	NO	2	128	C3-Phenanthrenes/Anthracenes	PA3	3	220
C1-Naphthalenes	N1	2	142	C4-Phenanthrenes/Anthracenes	PA4	3	234
C2-Naphthalenes	N2	2	156	Fluoranthene	FL0	4	202
C3-Naphthalenes	N3	2	170	Pyrene	PY0	4	202
C4-Naphthalenes	N4	2	184	C1-Fluoranthenes/Pyrenes	FP1	4	216
Acenaphthylene	AY	3	152	Benz[a]anthracene	BA0	4	228
Acenaphthene	AE	3	154	Chrysene	CO	4	228
Fluorene	FO	3	166	C1-Benz[a]anthracenes/Chrysenes	BAC1	4	242
C1-Fluorenes	F1	3	180	C2-Benz[a]anthracenes/Chrysenes	BAC2	4	256
C2-Fluorenes	F2	3	194	C3-Benz[a]anthracenes/Chrysenes	BAC3	4	270
C3-Fluorenes	F3	3	208	C4-Benz[a]anthracenes/Chrysenes	BAC4	4	284
Dibenzothiophene	DBT0	3	184	Benzo[b]fluoranthene	BBF	5	252
C1-Dibenzothiophenes	DBT1	3	198	Benzo[jk]fluoranthene	BJKF	5	252
C2-Dibenzothiophenes	DBT2	3	212	Benzo[e]pyrene	BEP	5	252
C3-Dibenzothiophenes	DBT3	3	226	Benzo[a]pyrene	BAP	5	252
C4-Dibenzothiophenes	DBT4	3	240	Perylene	PER	5	252
Phenanthrene	PO	3	178	Indeno[1,2,3-cd]pyrene	IND	6	276
Anthracene	A0	3	178	Dibenz[a,h]anthracene	DA	5	278
C1-Phenanthrenes/Anthracenes	PA1	3	192	Benzo[g,h,i]perylene	GHI	6	276
C2-Phenanthrenes/Anthracenes	PA2	3	206				

PAH Compounds

PAH Concentrations

PAH Mass Fraction Patterns

Background Surface Sediments

Municipal Solids

No. of Rings per Molecule = 3.9 PAH₁₇ = 33 mg/kg

No. of Rings per Molecule = 3.6PAH₁₇ = 32 mg/kg

MGP Tar

No. of Rings per Molecule = 2.5PAH₁₇ = 180,000 mg/kg

PAH Patterns

Oil Seep from an Upland Site

No. of Rings per Molecule = 3.0 PAH₁₇=53,000 mg/kg

NAPL Migration Due to Ebullition Newtown Creek Tributary – Dutch Kills

PAH Patterns

Gowanus Canal Surface Sediments

No. of Rings per Molecule = 2.8PAH₁₇ = 1,200 mg/kg

Newtown Creek Surface Sediments

No. of Rings per Molecule = 2.9PAH₁₇ = 1,400 mg/kg

PAH Source Ratio

FL0/(FL0+PY0)

Principal Component Analysis

PCA Score Plot – Gowanus Canal

PCA Score Plot – Newtown Creek

- BG Sediments
- ▲ MGP Tar
- Municipal Solids
- NTC Sediments
- NAPL from Ebullition
- ▲ NAPL from Upland Seep

PAH Composition vs. Concentration - Newtown

- BG Sediments
- ▲ MGP Tar
- Municipal Solids
- NTC Sediments
- NAPL from Ebullition
- ▲ NAPL from Upland Seep

PAH Composition vs. Concentration - Newtown

Municipal discharges are not a significant source of PAHs in Superfund Sediments:

- Municipal discharges have not resulted in elevated PAH concentrations in sediments in the receiving background waterbodies.
- Sediments in Superfund waterbodies contain PAH levels which are greater than those on municipal solids.
- Superfund sediments with elevated PAH concentrations show a different PAH composition from that on municipal solids.

Coal tar and other NAPL are likely sources:

- Coal tar, ebullition-transported NAPL and NAPL seep from upland sites contain PAHs at levels several orders of magnitude greater than municipal solids.
- Sediments with high PAH concentrations exhibit a composition that is more similar to coal tar.
- NAPL samples show a large variability in PAH concentration and composition. These variabilities can be attributed to both different sources and degree of weathering. Additional characterization of these NAPL sources is required to understand their contribution to PAH in sediments.

Conclusions