2019 Sediments Conference

Environment Testing TestAmerica

Closing the PFAS Mass Balance in Sediments and Tissues: The TOP Assay

Karla Buechler – Corporate Technical Director

TOP Assay - Outline

Introduction to PFAS

What are PFAS?

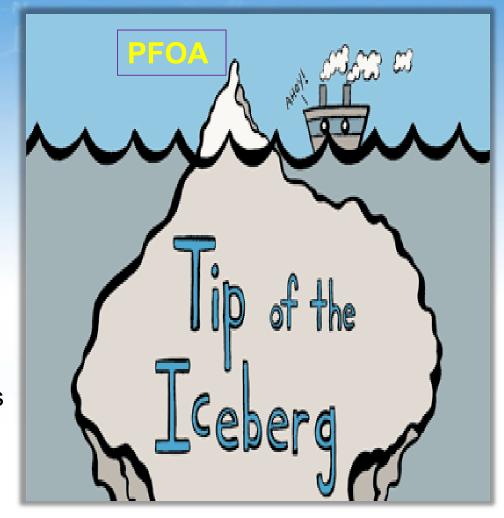
Nomenclature

Formation/Toxicity/Risk

The TOP Assay

What are precursors?

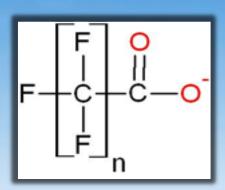
What is the TOP assay

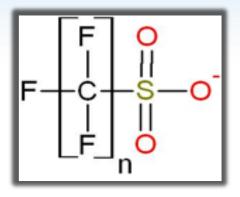

How does it work?

The chemical reaction

Challenges of complex samples

Best Practices for complexity

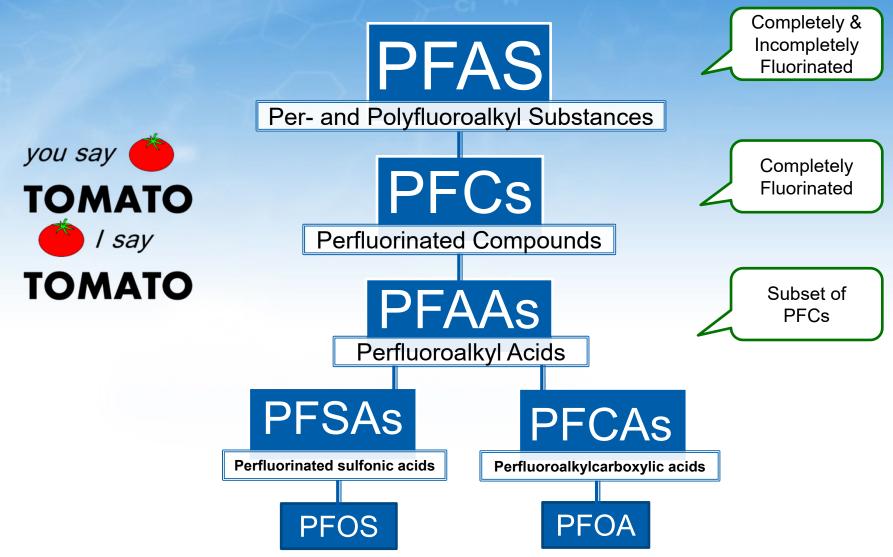

Conclusions



Briefly - What are PFAS?

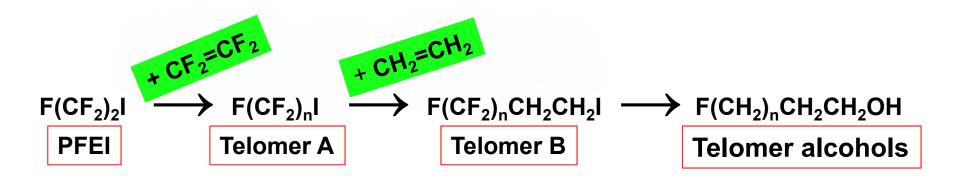
- Class of synthetic compounds containing carbon chains with fluorine attached.
- The C-F bond is one of the shortest and strongest bonds in nature.
- PFC Subset of PFAS completely fluorinated compounds. PFOS and PFOA are PFCs (no hydrogen atoms)
- PFAAs Perfluoroalkyl acids 2 classes PFCAs and PFSAs
- PFAS do not degrade BÚ¹ they do biotransform

Perfluoroalkyl Carboxylate



Perfluoroalkyl Sulfonate

Nomenclature



PFAS Formation

> ECF Reaction: Process yields a mixture of B/L isomers

$$C_8H_{17}SO_2F + 34HF \rightarrow C_8F_{17}SO_2F + 17H_2 (POSF)$$

➤ **Telomer Reaction:** Process yields 100% linear isomers (Synthesis of building blocks leading to fluorotelomer alcohols)

Exposure, Toxicity and Risk

Human exposure is primarily from:

food (fish) and air

Exposure continues beyond phase out:

> due to persistence

Half-lives in humans:

2 to 9 years

PFOA associated with:

liver, pancreatic, testicular, mammary gland tumors in animals.

PFOS associated with:

liver and thyroid cancer in rats.

PFOA and PFOS associated with:

cancers in humans; toxicology still being studied

What is the Risk? Why Do We Care About PFOA?

- Risk = one in one million risk of cancer from a lifetime exposure with no adverse effects
- NJ recommended health based MCL based on cancer and non-cancer endpoints = 14 ppt
- Production and use of PFOA in U.S. phased out
- Exposure continues due to persistence, biotransformation of precursor compounds and manufacturing abroad

Polyfluorinated – PFAA Precursors

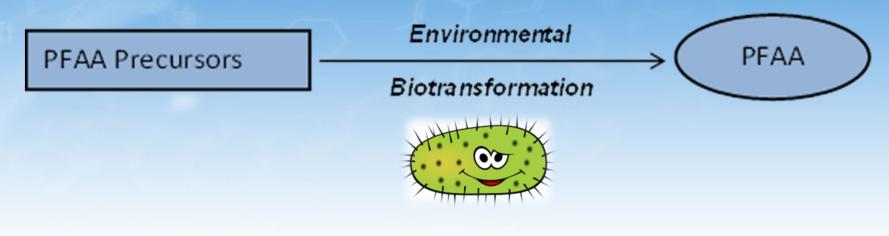
- Thousands of PFAS are used in industrial and consumer products
- Some biotransform to make PFAAs
- Some are fluorotelomers
- Most are ionic either positive, negative or both
- Fate and transport complex process

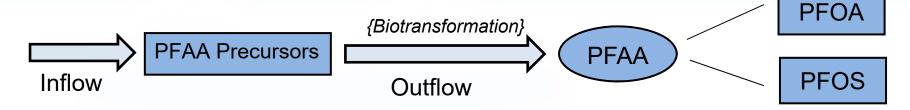
How Do Other PFAS Become PFOA?

Primarily 2 mechanisms:

- Abiotic transformation of PFAA precursors sulfonamido and fluorotelomer precursors oxidize to form PFCAs
- Aerobic biotransformation of fluorotelomer precursors to form PFCAs
- Other biological mechanisms exist

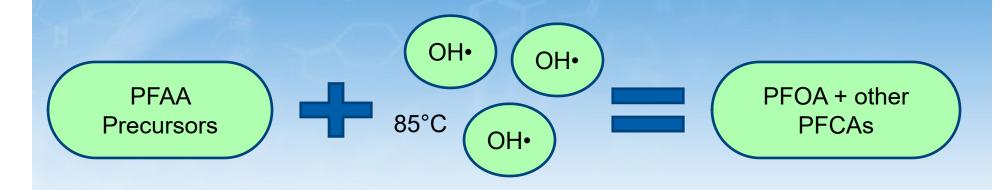
What is the TOP Assay?


- A new PFAS sample preparation technique
- Conceptually simple chemistry
- ➤ Used in conjunction with 537M (Not 537) combines pre and post oxidation results
- Indicates presence of unidentified PFAS in water, sediment and soil



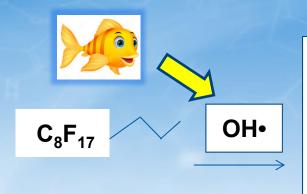
How Does it Work in the Environment?

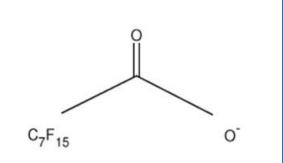
Give me an example:



Low levels of discrete compounds are detected

High levels of discrete compounds are detected, which can include PFOA and PFOS

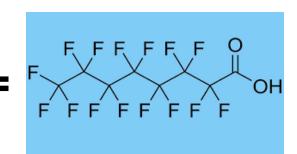

TOP – How it Works in the Laboratory



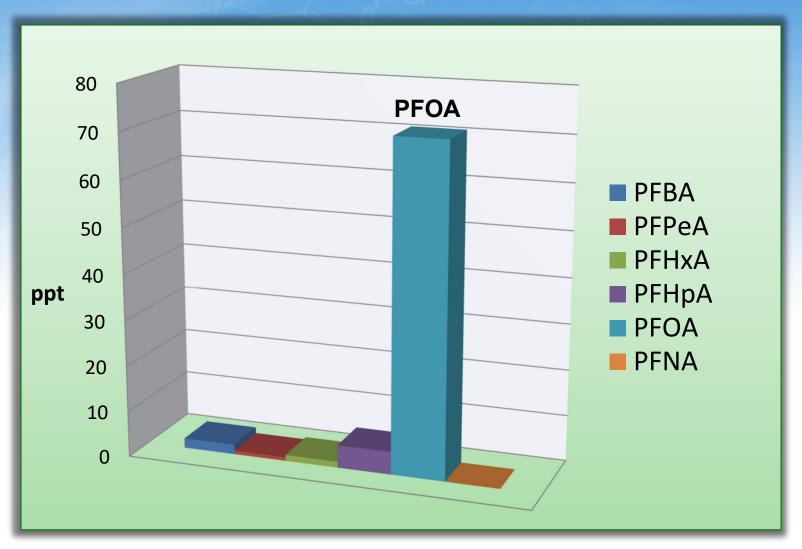
A Closer Look at the Chemistry

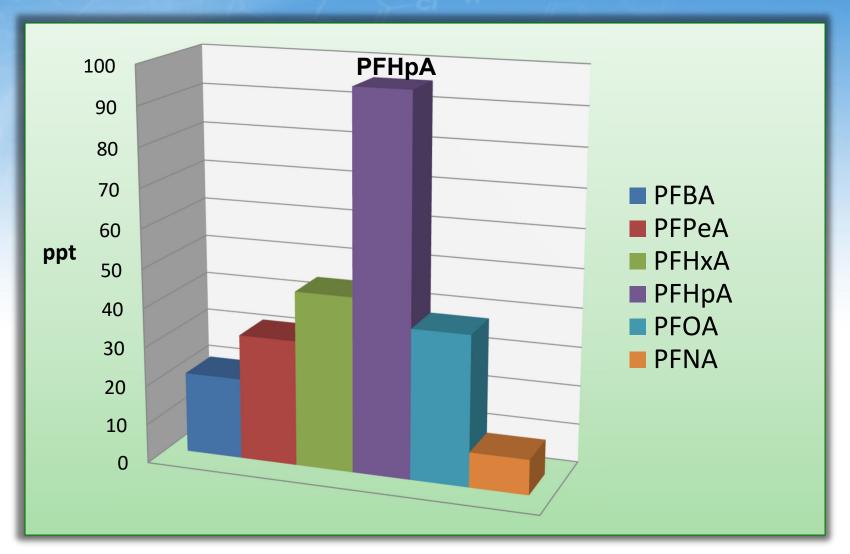
+

 $C_nF_{2n+1}COO n=3 - 6$

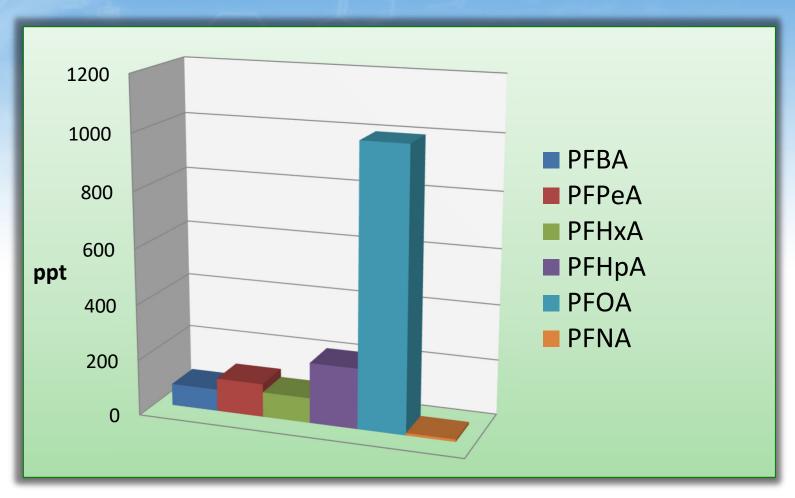

C₈ Fluorotelomer Precursor

PFOA


C7 and shorter PFCAs



PFCA Pattern – Me-FOSA Precursor


PFCA Pattern – 8:2 FTS

PFCA Pattern, 8 Precursors:

FOSA, MeFOSA, EtFOSA, 4:2FTS, 6:2FTS, 8:2FTS, MeFOSAA, and EtFOSAA

Complex Sample Challenges

- Poor or variable IDA/Surrogate Recoveries
- Incomplete oxidation native precursors are not completely converted
 - Consumption of oxidation potential by non-PFAS
 - Consumption of oxidation potential by PFAS
 - Poisoning of reagent chemistry
- Chromatographic Disturbances
 - Low molecular weight early eluters are problematic – split peaks
 - Unresolved mass
 - Interferences lots of extra peaks

Example of Complex Sample (Results in ppb)

	Precursor	Pre - TOP	Post - TOP	Oxidation
7	FOSA	350	9.5	Incomplete
	MeFOSAA	ND	ND	Complete
	EtFOSAA	5.9	ND	Complete
7	6:2 FTS	48	57	Incomplete
7	★ 8:2 FTS	690	270	Incomplete
	•			

Total PFCA Pre = 150 ppb

Total PFCA Post = 16,000 ppb

Re	oeat v	ith E	Best F	Practi	ces A	ppl	ied

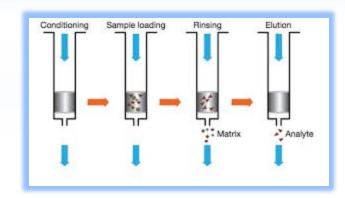
Topout IIII. 2001. Idoloco Applica								
Precursor	Pre - TOP	Post - TOP	Oxidation					
FOSA	350	ND	Complete					
MeFOSAA	ND	ND	Complete					
EtFOSAA	5.9	ND	Complete					
6:2 FTS	48	ND	Complete					
8:2 FTS	690	ND	Complete					

Total PFCA Pre = 150 ppb

Total PFCA Post = 13,000 ppb

Best Practice Steps

Step 1


Step 3

Step 2

Step 4

Fish Study - IDA/Surrogate Ave Recoveries

	1g Pre	1g Post	% Imp	0.1g Pre	0.1g Post	% lmp	1g Pre	1g Post	% lmp	0.1g Pre	0.1g Post	% Imp	
	N	o EnviCar	EnviCarb EnviCarb		No EnviCarb			With EnviCarb			With EnviCarb		
13C4 PFBA	716	65	49	22	74	52	43	72	29	40	74	35	
13C5 PFPeA	31	62	31	53	72	20	51	71	20	52	72	20	
13C2 PFHxA	32	65	32	54	73	19	52	72	20	54	73	19	
13C4 PFHpA	32	65	33	55	74	19	52	73	21	54	77	23	
13C4 PFOA	37	65	28	56	77	21	61	72	12	55	76	20	
13C3 PFBS	36	59	23	50	69	19	54	65	11	50	66	16	
1802 PFHxS	37	63	26	51	70	19	53	67	14	50	67	17	
13C4 PFOS	37	63	27	53	72	18	57	71	14	52	71	19	
13C8 FOSA	31	50	18	50	59	9	48	54	6	50	62	12	
d3-NMeFOSAA	41	60	19	53	70	17	61	67	6	55	69	14	
d5-NEtFOSAA	51	61	10	59	72	13	77	68	-8	56	71	16	



Fish Study Matrix Spikes

	1g MS Pre 1g MS Post 1g I		1g MS Pre	g MS Pre 1g MS Post 1g MS Pre		1g MS Post	1g MS Pre	1g MS Post	
		No En	viCarb		With EnviCarb				
PFBA	10.68	12.51	10.99	12.05	10.47	12.91	10.45	12.74	
PFPeA	10.44	11.69	9.79	11.89	9.91	11.79	10.10	11.98	
PFHxA	10.60	11.87	9.20	11.17	9.76	11.10	10.35	11.97	
PFHpA	11.30	12.17	10.78	12.20	13.95	13.01	14.92	11.78	
PFOA	10.49	17.96	10.41	17.84	10.50	19.65	10.78	19.91	
PFBS	8.99	9.26	8.94	8.88	9.08	9.27	9.10	9.24	
PFHxS	9.02	8.34	9.31	8.61	9.12	8.83	9.60	8.81	
PFHpS	10.06	9.43	10.61	9.46	10.27	9.21	10.52	9.30	
PFOS	14.27	14.24	14.02	14.03	13.68	13.11	13.33	12.63	
FOSA	11.56	ND	11.41	ND	10.85	ND	11.09	ND	
NMeFOSAA	10.74	ND	11.92	ND	10.58	ND	10.39	ND	
NEtFOSAA	10.65	ND	9.79	ND	10.59	ND	9.79	ND	
6:2 FTS	10.10	ND	8.72	ND	9.45	ND	9.45	ND	
8:2 FTS	9.23	ND	9.63	ND	9.85	ND	9.69	ND	

What Conclusions Can We Draw?

A lesson ...
... in jumping to CONCLUSIONS

- The TOP Assay can be performed on complex matrices
- Best practices include:
 - Mass reductions
 - EnviCarb
 - Optimized SPE cleanups
- ➤ IDA/Surrogate recoveries improve
- More effective oxidation has little impact on total PFCA concentration
- Might be useful for fish advisories

Thank you for attending Closing the PFAS Mass Balance in Sediments and Tissues: The TOP Assay

If you have any additional questions you may submit them directly to:

http://testamericainc.com/services-we-offer/ask-the-expert/karla-buechler/