

Subaqueous Sediment Capping from Field Investigation to Design with a Focus on Chemical Isolation

Prepared by:

Caryn Kiehl-Simpson, P.E. Jamie Beaver, P.E.

Presented at the International Conference on Remediation and Management of Contaminated Sediments February 11-14, 2019

New Orleans, Louisiana

Sediment Capping Background

- Sediment capping is defined as the placement of a subaqueous covering or cap of clean materials over contaminated sediment.
- Sediment caps are engineered systems design to provide:
 - Physical isolation
 - Chemical isolation
 - Stabilization
- Conventional and amended caps have been applied at sites around the world to contain contaminated sediments.

Sediment Capping Advancements

- Advancements over the last decade have included:
 - Demonstrated field investigation techniques and application of batch, column and other laboratory testing to aid in design evaluations
 - Porewater investigation and analysis
 - Groundwater upwelling
 - Site-specific lab and bench scale testing
 - Significant improvements in modeling tools
 - Increase in modeled fate and transport processes
 - User-defined or literature based input options
 - Chemical and material databases
 - Improve output graphics and profile definition
 - ◆ A better understanding of amendments and their application under varying site conditions
 - Ample lab, bench and pilot studies
 - Growing body of literature on application and performance

Key References for Sediment Capping

Key documents

- Guidance for In-Situ Subaqueous Capping of Contaminated Sediments (1998)
 - Palermo, M., Maynord, S., Miller, J., and Reible, D. EPA 905-B96-004, Great Lakes National Program Office, Chicago, IL.
- ◆ Contaminated Sediment Remediation Guidance for Hazardous Waste Sites (2005)
 - USEPA. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, DC, OSWER 9355.0-85.
- ◆ Contaminated Sediments Remediation, Remedy Selection for Contaminated Sediments (2014).
 - Interstate Technology & Regulatory Council. Washington, D.C.: Interstate Technology & Regulatory Council, Contaminated Sediments Team.
- ◆ Use of Amendments for In Situ Remediation at Superfund Sediment Sites (2013)
 - USEPA. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation, Washington, DC, OSWER 9200.2-128FS.

Representative Capping Projects

- **Important Precedence Projects**
 - ◆ Anacostia River, D.C.
 - ◆ Silver Lake, MA
 - **◆ Grand Calumet, IL**
 - Onondaga Lake, NY
 - ◆ Wycoff-Eagle Harbor, WA
 - ◆ McCormick and Baxter, OR
 - ◆ Stryker Bay, MN
 - ◆ Grasse River, NY
 - ◆ Pine Street Canal, VT

Cap Detail

Model Predicted
Contaminant
Concentration and
Flux

Cap Fate and Transport

Processes

Bioturbation

Bioirrigation

Tidal Pumping

Adsorption (linear and non-linear)

Advection (groundwater)

Diffusion (molecular)

Dispersion

Biological Decay

Settlement Induced PW

Expression

Cap Design Strategy

Cap Design Criteria

- Project goals and clean-up criteria
 - ◆ Chemical specific goal for sediment and/or porewater
 - Surface-weighted average concentrations
 - Surface water criteria
- Expectations for compliance points and/or design life
 - Bottom of habitat layer
 - ◆ Average throughout habitat layer/biologically active zone
 - Expectations on cap performance period
- Habitat and/or water depth requirements
 - Minimize water depth losses
 - Thicker layers required for habitat
 - Reduce potential for erosion

Potential compliance point

Cap Design Strategy

- Identify and Quantify Site Specific Cap Design Drivers
 - Primary contaminants and relative mobility
 - Porewater concentrations
 - Groundwater conditions
 - ◆ Presence of NAPI
 - Potential for ebullition

- Stability
- ◆ Settlement
- Site access, thickness restrictions, constructability or other site specific challenges

Cap Fate and Transport

<u>Processes</u>

Bioturbation

Bioirrigation

Tidal Pumping

Adsorption Advection

Diffusion

Dispersion

Biological Decay

Settlement Induced PW

Expression

Lessons Learned:

- ✓ Consider design strategy for the site and develop field investigation to quantify design drivers
- ✓ Consider tiered approach to field investigation depending on existing data, conceptual site model, budget constraints and project schedule
- ✓ Remediation drivers may not be the same as cap design drivers
- ✓ Consider screening level modeling
- ✓ Do not wait on more advanced testing such as bench or column testing

Data Collection for Cap Design - Porewater

- Characterize porewater concentrations immediately below cap
- Verify that detection limits are below performance criteria
 - Low level methods may be required for PCBs, metals, etc.
- Carefully consider volume limitations when choosing collection method
- ◆ Take care to maintain sample integrity
 - Be cognizant of surface water impacts and potential for draw down
 - Special handling and procedures may be required to maintain in situ conditions
- Information on TOC (sediment), DOC, pH, redox and other non-contaminant related parameters may be useful
- Photographic documentation of sampling

Sediment core collected for centrifugation

Data Collection for Cap Design - Porewater

- Peepers
- Suction devices
- Trident probes
- Centrifugation

Sediment core collected for centrifugation

Porewater sampling via peeper

Data Collection for Cap Design - Groundwater

- Characterize upland groundwater conditions
- Develop conceptual model of groundwater conditions across the site
 - Screening level evaluations and modeling
- Quantify upwelling velocities
 - Critical component of cap design
 - ◆ Can be challenging as velocities generally occur at a low rate and may be both seasonally and spatially variable
 - Decisions may be required based on cm/day, cm/month or cm/year

Subaqueous Capping and Natural Recovery: Understanding the Hydrogeologic Setting at Contaminated Sediment Sites. ERDC. July 2002.

- Involve hydrogeologist and groundwater modeler during data collection planning and cap design
- Consider multiple lines of evidence to provide an appropriate level of confidence in estimates of upwelling velocities throughout the cap footprint.

Data Collection for Cap Design - Groundwater

- Field Techniques
 - Screening tools
 - Piezometers
 - Manometers
 - **◆ Seepage Meters**
 - Ultra Seep Meter
- Modeling

Screening Transects

Seepage meters

Ultra Seep Meter

Manometer Screening

Groundwater Model Output - Darcy Velocity

Data Collection for Cap Design - Sediment

Chemical

- Sediment Concentrations
- + TOC
- Physical and Geotechnical
 - Grain size
 - % solids
 - Specific gravity
 - Atterberg limits
 - Consolidation
 - Shear strength field vane shear test, laboratory triaxial compression test

Other

- Presence of NAPL
- Evidence of Ebullition
- Bioturbation extent
- Deposition rates

Sediment Core via Drill Rig

Modified Van Veen Surface Sample

Vibracore Sampler

- ✓ Site-specific measurements of surficial sediment conditions may provide insight on post-cap conditions
- ✓ Geotechnical data collection required for all areas where cap stability and sediment may vary based on conceptual model

SPI Device and Image

Laboratory Testing for Cap Design

- Fate and Transport Evaluations
 - Column studies
- Amendment Evaluation
 - Batch and Column Studies
 - Carbon Isotherms
 - Partitioning Studies
- NAPL Mobility
- Biological Decay
- Ebullition

Lessons Learned:

- ✓ Useful for unique site conditions
- √ Requires upfront planning and coordination, may require method development
- ✓ Consider schedule implications and test durations
- ✓ Exceptional institutions capable of executing this work, wide-body of literature documenting state-of-the science

Chemical Isolation Layer Modeling

Goal

- Cap thickness
- Cap material
- **◆** Cap performance over lifetime

Approach

- Develop table of model input parameters
 - Establish values and potential range of values
 - Identify source empirical or literature based
 - Summarize basis for modeled condition
- Establish modeling framework based on site conditions
- Evaluate results with respect to design criteria and performance goals
- Challenge in developing appropriate design input over life of cap

Model Area Development

Chemical Isolation Layer Modeling

CapSim

- Simulates contaminant transport in sediments and sediment caps
- Basis dates back to the early 90's
- Current version is an extremely robust tool
 - User friendly interface
 - Database of chemical and material properties
 - Quick start instruction manual
 - Includes extensive options for fate and transport processes
 - Useful graphic capabilities
 - Detailed results output

CapSim Model Start-up Screen

Chemical Isolation Layer Modeling

Lessons Learned:

- ✓ Invest time upfront in developing model input parameters and range of conditions, compliance points and durations of interest
- ✓ Use site-specific data where possible especially for parameters that drive design
- ✓ Model output requires post-processing and presentation framework for results communication and evaluation against design performance criteria
- ✓ It is critical to review output profiles and conduct some form of sensitivity evaluation to validate results
- ✓ Consider long-term monitoring requirements and ability to verify cap performance, this may influence modeling results interpretation and presentation

CapSim Model Summary Screen

What have we learned?

- Site Characterization for Cap Design
 - Porewater characterization and quantification of groundwater rates are essential
 - ◆ Field investigation should attempt to characterize site characteristics that drive the design to the extent practical, upfront investment in data collection will help to streamline modeling and design
 - Unique site conditions and/or amendment applications may require phased field investigation, lab bench scale and/or pilot testing
- Cap Modeling
 - ◆ Advances in modeling tools streamline the modeling process; however, it remains essential to understand the fate and transport processes and contaminant profiles in the cap layers
 - ◆ A well thought out modeling strategy and model input table help communicate basis for design
 - Dividing the site into areas with specific characteristics helps to focus modeling evaluations
 - Allow time for post processing and consideration of effective results presentation
- Cap Design
 - Key guidance documents and experience documented at numerous sites provide useful references for design evaluations
 - Multiple line of evidence approach may be required to design for long-term
 - ◆ Consider how long-term monitoring requirements will be used to verify design criteria have been accomplished
 - Critical to continue to document, present and share lessons learned on capping projects (especially amended caps) to continue advancing the science, design and long-term performance assessment

Thank You!

Caryn Kiehl-Simpson
Project Manager/Senior Environmental Engineer
ckiehlsimpson@eaest.com

