

Sediment Cap Design and Placement: Site 19, Former Derecktor Shipyard Marine Sediment (Operable Unit 5), Newport, RI

Tenth International Conference on the Remediation and Management of Contaminated Sediments

complex world

CLEAR SOLUTIONS"

Road Map

- Location, Background, and Description
- Setting
- Considerations
- Summary
- Contact & Questions

Regional Location – Site 19

Site-Specific Location – Pier 2

Background – Use

- Area leased to Robert E. Derecktor Shipyards of Rhode Island, Inc. (1979 – 1992)
- Former operations included sandblasting, painting, welding, and assembly of ships
- Current primary activities include research, development, and training

Background – Pier 2 Contamination

Cell G29

TETRA TECH

Cell G25

Contaminant	Cell 25	Cell 29	ROD Cleanup Levels	$i \rightarrow$
Benzo(a)pyrene (µg/kg)	2,200	1,600	539 (ingestion of shellfish)	\langle
Heavy molecular weight PAHs	26,800	17,300	13,903 (toxic to aquatic organisms)	$\left\langle \right\rangle$
Lead (mg/kg)	212	98	168 (toxic to aquatic organisms)	

Background – Selected Remedy

- The Selected Remedy addressed low levels of PAHs and lead in sediments under the pier
- Dredging under pier was not feasible
 - Pilings in way of traditional equipment
 - Very limited clearance beneath pier at both high and low tides
 - Diver-assisted dredge raised safety concerns
- September 2014 ROD required:
 - Two-foot thick cap
 - Controls to prevent disturbance of the cap
 - Monitoring and Five-year Reviews

Setting – Pier 2 Details

TETRA TECH

Tt

- Concrete decking with concrete pilings (10 ft spacing)
- 30+ feet of water with 3 to 4 ft of clearance below pier at high tide

Setting – Pier 2 Use

 Home port to four USCG cutters, one NOAA research ship, and two Naval Undersea Warfare Center research craft

TETRA TECH

TŁ

- Hosts the Bi-Annual International Seapower Symposium and numerous non-home ported US & foreign vessels
- Topside buildings provide maintenance and administration support

Considerations – Capping Material

- Cap required to withstand erosion from currents, 100-year storm, and ship movements (e.g., thrusters)
- Modeling indicated aggregate size of 38 mm met scour concerns for currents, 100-year storm, and all types of ships except Expeditionary Fast Transport (EFT) vessels like the USS Carson City.

USS Carson City

 EFT vessels require aggregate size was 85 mm. Selected use of 38 mm aggregate since EFT vessels not likely docked in slips adjacent to cap location

Considerations – Borrow Source

- Once material size was selected, project team needed a source that was regular in size
- Material had to be screened at source to ensure average size in thickness in two dimensions meets requirements. If not, equipment to deploy material would clog.

Cap material measurement

Considerations – Turbidity Control

- Turbidity curtain enclosed project area
- Did not extend to sediment surface to account for tidal range and prevent it from contacting/disturbing sediment
- Flotation devices, weights, anchors, and reefing lines
- Routinely inspected, and repaired immediately

Capping material barge within turbidity curtain

Considerations – Turbidity Monitoring

- Negotiated action level requiring stop work (background plus 10 NTUs) with EPA
- Placed buoy-mounted turbidity monitors outside of curtained work area
- Used telemetry system to send real-time data to laptop/cell phone so adjustments could be made immediately

TETRA TECH

Tt

Buoy-mounted turbidity monitors

Considerations – Turbidity Monitoring

TETRA TECH

Tt

Buoy-mounted turbidity monitor and turbidity curtain array (triangles represent monitors, red dashed line represents turbidity curtain)

Considerations – Capping Sequence

- Conducted a pre-cap bathymetric survey
- Installed cap material using diver-assisted hoses
- Installed berms along outside edge of area to be capped
- Capped material placed starting at berm and working inward in two lifts (6-in. followed by 18-in.)

Cap material stockpile on barge

Considerations – Confirming Complete

- Diver-assisted confirmation
- Confirmed cap extended to premarked piles (lateral and vertical)
- Test pitted to verify two-foot thickness
- Single-beam bathymetry to confirm cap placement and document final

TETRA TECH

Tt

Cap material being placed with an excavator to construct the northern berm adjacent to Pier 2

Considerations – Long Term Monitoring

TETRA TECH

Tt

- Bathymetry to be performed 3 times per year
 - After planned ISS (November)
 - After winter storm season (March)
 - During summer (August)
- Conduct qualitative evaluation of habitat recovery by diver inspection approximately 3 years after installation, summarize findings in the Five-Year Review report
- Issue report annually, including evaluation of ship traffic logs

TE TETRA TECH

Considerations – Long Term Monitoring

- Review LTM program at each five-year review cycle
- Bathymetry may be reduced if cap is performing as expected, no loss of thickness, and no weather or ship-related impacts
- Sampling and coring is not always possible or needed, and should not be a default

Key Take Home Messages

- Safety is a priority, especially when work is diverassisted
- Sizing of material should be based on knowledge of currents and ship movements
- Borrow source should confirm material provided is uniform in size and not irregular
- Turbidity monitoring is a must
- Utilize berms and multiple lifts to place the material
- Bathymetry is main component to confirm surface area coverage complete, however test pits are needed to confirm required thickness is achieved.