

In Situ Treatment for PCBs in Sediment – Treatability to Implementation

02/14/2019

Keir Craigie, Gary Braun, and Senda Ozkan Tetra Tech Inc Ernest Ashley, CDM Smith John Collins, AquaBlok

Tenth International Conference on Remediation and Management of Contaminated Sediments February 11 – 14, 2019 New Orleans, Louisiana

PRESENTATION OUTLINE

Background

Site Characteristics

Feasibility Study

Treatability Study

Remedial Design

Baseline Data Collection

Remedial Implementation

Monitoring

Site Characteristics

- Creek and tidally influenced estuary
- Industrial and residential area
- Partial navigation channel
- Recreational use
 - Boating
 - Swimming
 - Fishing
- Creek discharging into the cove
- 8 to 10 feet water depth in the cove
- Silty with little sand
- Organic carbon ~ 1 5.5 %
- PCB contamination
 <1 3600 mg/kg PCBs
- In Situ treatment area total PCB concentrations generally < 3 mg/kg

Feasibility Study: Remedial Technologies Considered

- Removal
 - Areas of high concentration
 - Hydrodynamic high erosion potential
 - Habitat
- Capping
 - Limited potential due to shallowness of creek and the navigation channel in cove area
- In Situ Treatment and Monitored Natural Recovery (MNR)
 - Potential option for areas of relatively low concentrations and contamination limited to surface sediments

Treatability to Implementation Process

Treatability Study as part of the Feasibility Study	 Effectiveness of technology to achieve remedial goals as part of the site remedy
Remedial Design	 Development of implementation approach
Baseline Monitoring	 Establish data set for future effectiveness evaluation
Remedial Implementation	 Quality Control confirmation sampling
Long Term Monitoring for Effectiveness	 Verification of implementation effectiveness and stability

In Situ Treatment Treatability Study

- Evaluation of sediments with approximately 1 2.5 mg/kg total PCBs
- Evaluation of 5 amendment materials
 - Granular activated carbon (GAC bituminous coal derived)
 - Powdered activated carbon (PAC – bituminous coal derived)
 - Organoclay
 - Biochar (pinewood-derived)
 - Coke
- Initial evaluation of amendments to reduce porewater concentrations of PCBs
 - Use of passive samplers for PCB sediment porewater
 - Laboratory bioaccumulation study

Figure 3. Laboratory bioaccumulation experiment using the freshwater oligochaete L. variegatus.

TETRA TECH

Treatability - Porewater Reduction Results

- PAC and biochar reductions 94.9 – 99.8%
- GAC reductions 67 81.6%
- Organoclay and coke reductions 36 – 58%
- Biochar, GAC and PAC had greater reductions for lighter PCBs
 - Long term field studies have shown the heavier
 PCBs will have higher reduction over time.

Treatability - Reduction in Total PCB Bioaccumulation

- Amended sediment and freshwater oligochaetes
- 28 days exposure period
- PAC (5%)
- Biochar (5%)
- Collection and depuration of worms
- Analysis of worm tissue for PCBs
- 92 96 % reduction in tissue concentrations for PAC
- 96 % reduction in tissue concentrations for Biochar

Remedial Design

- Combination remedy of dredging and *in situ* treatment
- Selection of PAC for the *in situ* treatment based on the treatability results and FS assessment (cost-effective placement technology)
- Completion of dredging for areas of higher PCB concentrations followed by application of a residuals management layer
- Application of PAC for the *in situ* treatment in areas with PCB contamination in the surface sediment between 0.7 mg/kg and 2.5 mg/kg
- Approximately 1/3 of the area (6 acres) of contaminated sediment to be dredged and 2/3 of the area (13 acres) with *in situ* treatment
- Work completed under a pair of Risk-Based Removal Application Approvals with the US EPA
 - One for the dredging
 - One for the in situ treatment (Contingent on monitoring)

Baseline Monitoring – Pre In Situ Treatment

- Five sediment locations across the *in situ* treatment area
- Collection of sediment cores for profiling 4 depth intervals from 0 to 12 inches
- Collection of bulk sediment for laboratory ex situ testing
- Deployment of passive sediment porewater samplers for 28 days for *in situ* sampling
- Laboratory analysis of sediment for PCB congeners, total organic carbon, and black carbon

Laboratory Bioaccumulation Tests – Ex Situ

- Use of *Lumbriculus variegatus* for 28 day bioaccumulation test
- 5 replicates for each location performed along with control site samples
- Site water used for testing
- Tissue samples collected at end of test for PCB congener and lipid analysis
- Sediment porewater samples collected for the exposure sediment using passive samplers

Baseline Bioaccumulation and Sediment Porewater Results

Sample Location	Average Tissue PCB Concentration (ug/g) Dry Weight	RSD		
1	0.273	21 %		
2	0.793	26 %		
3	0.435	14 %		
4	0.369	26 %	Sample	Average Porewate
5	0.276	28 %	Location	PCB Concentration

5 replicate sediment tests performed at each sample location

Sample Location	Average Porewater PCB Concentration (ng/L)	RSD
1	11.2	11 %
2	57.1	7 %
3	22.7	21 %
4	11.2	14 %

3 replicate porewater samples collected at each sample location

Remedy Implementation – In Situ Treatment

- 13.7 Acres of *in situ* treatment
- 2,500 tons of AquaGate + PAC (10%)
- Cable-propelled Barge Spreader to place material
- Initial test runs to establish barge and spreader operation rates to achieve project goals of ~5% PAC
- Application challenge consistent placement of an ~ 1 inch layer of the AquaGate + PAC

Remedial Construction Quality Control

- Manufacturing quality control documentation verified material quality (PAC content)
- Multiple lines of evidence used to verify placement
 - Application rate calculated 178 tons/acre
 - Tracked daily by usage and covered area
 - Aggregate thickness measurements
 - 15 cores/acre
 - 214 total samples
 - Total organic carbon and black carbon analysis
 - 15 cores/acre
 - 214 total samples analyzed
 - Sample buckets collected for verification of quantity of PAC placed

Remedy Placement Verification

- Thickness measurement criteria 0.95 1.8 inch
 - Average of 1.1 inches measured by core and bucket samples
- TOC and black carbon criteria 2.4% 4.5 % organic carbon added
 Average 2.7 % organic carbon
- Bucket Collection Test Sample Results
 - Verification of PAC Placement
 - Initial Barge/Spreader Calibration*
 - Full Area In Situ Placement

Post Remedy Monitoring Plan

- Repeat of Baseline sampling approach porewater sampling and bioaccumulation testing at same 5 locations
- Year 1, 3 and 5
- Criteria 70% reduction in tissue bioaccumulation concentrations
- Criteria 80% reduction in porewater concentrations

Post Remedy Monitoring – Year 1

- Same Sampling and testing approach as was completed for the Baseline
- 5 Monitoring locations of *In Situ* sediment porewater samples using Passive sampling methods for dissolved phase concentrations
- 3 sediment porewater samples and a surface water sample at each monitoring location
- Collection of bulk sediment for Bioaccumulation tests and ex situ sediment porewater samples
- Bioaccumulation tests performed as 5 replicates for each monitoring location and a laboratory control sediment
- Tissue samples collected for PCB congener analysis
- Collection of cores from each monitoring location to measure organic carbon content at 4 depth intervals

Monitoring Year 1 - Total Organic Carbon by Sediment Depth intervals

- Three cores collected from each monitoring location. Composite samples for each interval collected and analyzed for Total Organic Carbon and Black Carbon
- Year 1 results show presence of activated carbon and mixing to a depth of 4 inches based on increase in TOC above baseline

Monitoring Year 1 - Preliminary Results

- 28 day Bioaccumulation Tissue
 - > 85 % reduction in total PCB tissue concentrations from Baseline
- In Situ Porewater
 - > 90 % reduction in total PCB sediment porewater concentrations from Baseline
- Surface Water
 - > 65 % reduction in total PCB surface water concentrations from Baseline

TETRA TECH

Summary

- Treatability Study demonstrated activated carbon effectiveness to reduce sediment porewater concentrations and benthic bioaccumulation of PCBs
- Remedy design completed with *In Situ* treatment with powdered activated carbon as part of a combination remedy
- Implementation of the Remedy successfully completed with comprehensive verification approach
- Initial Monitoring at Year 1 demonstrates effectiveness close to the treatability study results

Questions?

