Multiple Lines of Empirical Evidence Demonstrate an Absence of Adverse Effects from MGP Residues at PAH Concentrations Significantly Higher than Regulatory Screening Levels L. McWilliams, H. Costa, and S. Bodensteiner Haley & Aldrich Tenth International Conference on Remediation and Management of Contaminated Sediments February 11-14, 2019 #### **Presentation Overview** - State oversight agency issued requirement to evaluate potential impairment of beneficial uses of the waterway due to PAHs in sediment - Addressed requirement using an empirical sediment evaluation framework based on multiple lines of evidence - Application of the framework found that common screening level values (e.g., ER-M) are poor predictors of potential impairment - Demonstrated absence of adverse effects at total PAH > 100,000 μ g/kg significantly reduces area requiring remedial evaluation Total PAH concentrations in surface sediment well above ambient, even in areas with no MGP-related impacts #### Healthy benthic community based on extensive sediment profile imaging ## The challenge - Urban/commercial waterfront in SF Bay with sediment PAHs >> Ambient (presumed former MGP source) - Maintenance dredging permitting encountered sediment with PAHs exceeding acceptable in-Bay disposal (~4,600 μg/kg bioaccumulation threshold) - State oversight agency issued conditional water quality certification for permit renewal, requiring evaluation of potential impairment of beneficial uses of the waterway by PAHs - 4,600 $\mu g/kg$ threshold exceeded throughout study area from multiple sources including complex "urban influence" #### The approach – An empirical evaluation of beneficial use impairment - Ten site-specific assessment methods - Receptor-appropriate comparison criteria - Conservative binary outcomes (no adverse effects vs. potential adverse effects) - Integrative data evaluation matrix for remedial decision-making #### Empirical testing – toxicity and bioaccumulation **Objective**: Evaluate relationship between PAHs in sediment and adverse effects - Develop lowest site-specific effects concentration (LSSEC) for PAHs - Perform bioassays over a graduated range of total PAH concentrations - Benthic acute toxicity testing (amphipod and polychaete) - Sediment-water interface (SWI) acute and chronic toxicity testing - Sheepshead minnow and Blue mussel embryos survival and growth/development - Dredge residual elutriate testing (DRET) - Resulting water column total PAH concentrations - Acute toxicity using larval Inland silverside - Bioaccumulation testing (polychaete and clam) - Compare to TRVs (invertebrates), human health consumption criteria, and site-specific risk-based concentrations from food web modeling (fish, birds, and marine mammals) Eight methods link adverse effects to total PAH concentration Two methods involve direct observations | | A. Water
Column
Toxicity | B. Elutriate r Total PAH Concentration | | C. Acute Benthic
Invertebrate
Toxicity
Sediment | D. Sediment-
Water Interface
Test with Larval
Fish | E. Sediment-
Water Interface
Test with Mussel
Embryos | Bioaccumul
Protective of | Body Burden from ation Testing, Invertebrates Ipoints) | G. PAH Concentrations
in Tissue from
Bioaccumulation
Testing, Protective of
Fish, Birds, and Marine | H. PAH Concentrations in Tissue from Bioaccumulation Testing, Protective of | I. Sediment Profile
Imaging (SPI) Survey | J. Pore Water and Surface Water
Total PAH Concentrations | | |------------------------------|--------------------------------|--|---|--|---|---|--|--|---|--|---|---|--| | | Bioassay | B1. Ecological
Receptors | B2. Human
Receptors | Bioassay
(2 endpoints) | (2 endpoints) | (2 endpoints) | F1. Survival | F2. Tissue
Concentrations | Mammals
(2 endpoints) | Humans
(2 endpoints) | | J1. Ecological
Receptors | J2. Human
Receptors | | No Adverse
Effects | Non-toxíc | Below SF Bay
Water Quality
Objective | Below Site-
Specific Risk-
Based Human
Direct Contact
Exposure Criteria | Both Endpoints
(species) =
Non-toxic | Both Endpoints
(survival, growth) =
No Significant
Impacts | Both Endpoints
(survival, growth) =
No Significant
Impacts | Both Test Species
Survive | Both Test Species
Below TRVs
Protective of
Invertebrates | Both Test Species Below
Site-Specific Risk-Based
Tissue Criteria | Both Test Species
Below Human Health
Consumption Criteria | Infaunal Succession
Stage 2 or 3; or
Stage 1 with physical
disturbance | Below SF Bay
Water Quality
Objective | Below Site-Specific
Risk-Based Human
Direct Contact
Exposure Criteria | | Potential
Adverse Effects | Toxic | Above SF Bay
Water Quality
Objective | Above Site-
Specific Risk-
Based Human
Direct Contact
Exposure Criteria | One or Both
Endpoints
(species) = Toxic | One or Both
Endpoints
(survival, growth) =
Significant Impacts | One or Both
Endpoints (survival,
growth) = Significant
Impacts | One or More
Test Species
Don't Survive | One or Both Test
Species Greater
Than TRVs
Protective of
Invertebrates | One or Both Test Species
Greater Than Site-Specific
Risk-Based Tissue Criteria | One or Both Test
Species Greater Than
Human Health
Consumption Criteria | Infaunal Succession
Stage 1 with absence of
physical disturbance | Above SF Bay
Water Quality
Objective | Above Site-Specific
Risk-Based Human
Direct Contact
Exposure Criteria | Comparison criteria protective of fish and wildlife were developed via foodweb modelling Eight methods link adverse effects to total PAH concentration Two methods involve direct observations | , | | | | | | | | | | | | | | |------------------------------|--------------------------------|--|---|--|---|---|--|--|--|--|---|---|--| | | A. Water
Column
Toxicity | r B. Elutriate r Total PAH Concentration | | C. Acute Benthic
Invertebrate
Toxicity
Sediment | D. Sediment-
Water Interface
Test with Larval
Fish | E. Sediment-
Water Interface
Test with Mussel
Embryos | Bioaccumul
Protective of | Gody Burden from ation Testing, in Tissue from Bioaccumulation Ipoints) Testing, Protective of Fish, Birds, and Marine | | H. PAH Concentrations in Tissue from Bioaccumulation | I. Sediment Profile
Imaging (SPI) Survey | J. Pore Water and Surface Water
Total PAH Concentrations | | | | Bioassay | B1. Ecological
Receptors | B2. Human
Receptors | Bioassay
(2 endpoints) | (2 endpoints) | (2 endpoints) | F1. Survival | F2. Tissue
Concentrations | Mammals
(2 endpoints) | Humans
(2 endpoints) | | J1. Ecological
Receptors | J2. Human
Receptors | | No Adverse
Effects | Non-toxíc | Below SF Bay
Water Quality
Objective | Below Site-
Specific Risk-
Based Human
Direct Contact
Exposure Criteria | Both Endpoints
(species) =
Non-toxic | Both Endpoints
(survival, growth) =
No Significant
Impacts | Both Endpoints
(survival, growth) =
No Significant
Impacts | Both Test Species
Survive | Both Test Species
Below TRVs
Protective of
Invertebrates | Both Test Species Below
Site-Specific Risk-Based
Tissue Criteria | Both Test Species
Below Human Health
Consumption Criteria | Infaunal Succession
Stage 2 or 3; or
Stage 1 with physical
disturbance | Below SF Bay
Water Quality
Objective | Below Site-Specific
Risk-Based Human
Direct Contact
Exposure Criteria | | Potential
Adverse Effects | Toxic | Above SF Bay
Water Quality
Objective | Above Site-
Specific Risk-
Based Human
Direct Contact
Exposure Criteria | One or Both
Endpoints
(species) = Toxic | One or Both
Endpoints
(survival, growth) =
Significant Impacts | One or Both
Endpoints (survival,
growth) = Significant
Impacts | One or More
Test Species
Don't Survive | One or Both Test
Species Greater
Than TRVs
Protective of
Invertebrates | One or Both Test Species
Greater Than Site-Specific
Risk-Based Tissue Criteria | One or Both Test
Species Greater Than
Human Health
Consumption Criteria | Infaunal Succession
Stage 1 with absence of
physical disturbance | Above SF Bay
Water Quality
Objective | Above Site-Specific
Risk-Based Human
Direct Contact
Exposure Criteria | Risk-based direct contact exposure criteria were developed for the protection of recreational swimmers and commercial/maintenance workers Comparison criteria protective of fish and wildlife were developed via foodweb modelling Eight methods link adverse effects to total PAH concentration Two methods involve direct observations | 7 | | | | | | | | | | | | | | |------------------------------|--------------------------------|--|---|--|---|---|--|--|---|--|---|---|--| | | A. Water
Column
Toxicity | B. Elutriate
Total PAH Concentration | | C. Acute Benthic
Invertebrate
Toxicity
Sediment | D. Sediment-
Water Interface
Test with Larval
Fish | E. Sediment-
Water Interface
Test with Mussel
Embryos | Bioaccumul
Protective of | Body Burden from ation Testing, Invertebrates Ipoints) | G. PAH Concentrations
in Tissue from
Bioaccumulation
Testing, Protective of
Fish, Birds, and Marine | H. PAH Concentrations in Tissue from Bioaccumulation | I. Sediment Profile
f Imaging (SPI) Survey | J. Pore Water and Surface Water
Total PAH Concentrations | | | | Bioassay | B1. Ecological
Receptors | B2. Human
Receptors | Bioassay
(2 endpoints) | (2 endpoints) | (2 endpoints) | F1. Survival | F2. Tissue
Concentrations | Mammals
(2 endpoints) | Humans
(2 endpoints) | | J1. Ecological
Receptors | J2. Human
Receptors | | No Adverse
Effects | Non-toxic | Below SF Bay
Water Quality
Objective | Below Site-
Specific Risk-
Based Human
Direct Contact
Exposure Criteria | Both Endpoints
(species) =
Non-toxic | Both Endpoints
(survival, growth) =
No Significant
Impacts | Both Endpoints
(survival, growth) =
No Significant
Impacts | Both Test Species
Survive | Both Test Species
Below TRVs
Protective of
Invertebrates | Both Test Species Below
Site-Specific Risk-Based
Tissue Criteria | Both Test Species
Below Human Health
Consumption Criteria | Infaunal Succession
Stage 2 or 3; or
Stage 1 with physical
disturbance | Below SF Bay
Water Quality
Objective | Below Site-Specific
Risk-Based Human
Direct Contact
Exposure Criteria | | Potential
Adverse Effects | Toxic | Above SF Bay
Water Quality
Objective | Above Site-
Specific Risk-
Based Human
Direct Contact
Exposure Criteria | One or Both
Endpoints
(species) = Toxic | One or Both
Endpoints
(survival, growth) =
Significant Impacts | One or Both
Endpoints (survival,
growth) = Significant
Impacts | One or More
Test Species
Don't Survive | One or Both Test
Species Greater
Than TRVs
Protective of
Invertebrates | One or Both Test Species
Greater Than Site-Specific
Risk-Based Tissue Criteria | One or Both Test
Species Greater Than
Human Health
Consumption Criteria | Infaunal Succession
Stage 1 with absence of
physical disturbance | Above SF Bay
Water Quality
Objective | Above Site-Specific
Risk-Based Human
Direct Contact
Exposure Criteria | Comparison criteria protective of fish and wildlife were developed via foodweb modelling Eight methods link adverse effects to total PAH concentration Two methods involve direct observations | 7 | | | | | | | | | | | | | | |------------------------------|--------------------------------|--|---|--|---|---|---|--|--|--|---|---|--| | | A. Water
Column
Toxicity | B. Elutriate
Total PAH Concentration | | C. Acute Benthic
Invertebrate
Toxicity
Sediment | D. Sediment-
Water Interface
Test with Larval
Fish | E. Sediment-
Water Interface
Test with Mussel
Embryos | F. Survival and Body Burden
Bioaccumulation Testing
Protective of Invertebrate
(2 endpoints) | | nvertebrates Bioaccumulation | | I. Sediment Profile
f Imaging (SPI) Survey | J. Pore Water and Surface Water
Total PAH Concentrations | | | | Bioassay | B1. Ecological
Receptors | B2. Human
Receptors | Bioassay
(2 endpoints) | (2 endpoints) | (2 endpoints) | F1. Survival | F2. Tissue
Concentrations | Mammals
(2 endpoints) | Humans
(2 endpoints) | | J1. Ecological
Receptors | J2. Human
Receptors | | No Adverse
Effects | Non-toxic | Below SF Bay
Water Quality
Objective | Below Site-
Specific Risk-
Based Human
Direct Contact
Exposure Criteria | Both Endpoints
(species) =
Non-toxic | Both Endpoints
(survival, growth) =
No Significant
Impacts | Both Endpoints
(survival, growth) =
No Significant
Impacts | Both Test Species
Survive | Both Test Species
Below TRVs
Protective of
Invertebrates | Both Test Species Below
Site-Specific Risk-Based
Tissue Criteria | Both Test Species
Below Human Health
Consumption Criteria | Infaunal Succession
Stage 2 or 3; or
Stage 1 with physical
disturbance | Below SF Bay
Water Quality
Objective | Below Site-Specific
Risk-Based Human
Direct Contact
Exposure Criteria | | Potential
Adverse Effects | Toxic | Above SF Bay
Water Quality
Objective | Above Site-
Specific Risk-
Based Human
Direct Contact
Exposure Criteria | One or Both
Endpoints
(species) = Toxic | One or Both
Endpoints
(survival, growth) =
Significant Impacts | One or Both
Endpoints (survival,
growth) = Significant
Impacts | One or More
Test Species
Don't Survive | One or Both Test
Species Greater
Than TRVs
Protective of
Invertebrates | One or Both Test Species
Greater Than Site-Specific
Risk-Based Tissue Criteria | One or Both Test
Species Greater Than
Human Health
Consumption Criteria | Infaunal Succession
Stage 1 with absence of
physical disturbance | Above SF Bay
Water Quality
Objective | Above Site-Specific
Risk-Based Human
Direct Contact
Exposure Criteria | Comparison criteria protective of fish and wildlife were developed via foodweb modelling Eight methods link adverse effects to total PAH concentration Two methods involve direct observations | 9 | | | | | | | | | | | | | | |------------------------------|--------------------------------|--|---|--|---|---|--|--|---|--|---|---|--| | | A. Water
Column
Toxicity | B. Elutriate
Total PAH Concentration | | C. Acute Benthic
Invertebrate
Toxicity
Sediment | D. Sediment-
Water Interface
Test with Larval
Fish | E. Sediment-
Water Interface
Test with Mussel
Embryos | Bioaccumul
Protective of | Body Burden from
ation Testing,
f Invertebrates
dpoints) | G. PAH Concentrations
in Tissue from
Bioaccumulation
Testing, Protective of
Fish, Birds, and Marine | H. PAH Concentrations in Tissue from Bioaccumulation | I. Sediment Profile
Imaging (SPI) Survey | J. Pore Water and Surface Water
Total PAH Concentrations | | | | Bioassay | B1. Ecological
Receptors | B2. Human
Receptors | Bioassay
(2 endpoints) | (2 endpoints) | (2 endpoints) | F1. Survival | F2. Tissue
Concentrations | Mammals
(2 endpoints) | Humans
(2 endpoints) | | J1. Ecological
Receptors | J2. Human
Receptors | | No Adverse
Effects | Non-toxic | Below SF Bay
Water Quality
Objective | Below Site-
Specific Risk-
Based Human
Direct Contact
Exposure Criteria | Both Endpoints
(species) =
Non-toxic | Both Endpoints
(survival, growth) =
No Significant
Impacts | Both Endpoints
(survival, growth) =
No Significant
Impacts | Both Test Species
Survive | Both Test Species
Below TRVs
Protective of
Invertebrates | Both Test Species Below
Site-Specific Risk-Based
Tissue Criteria | Both Test Species
Below Human Health
Consumption Criteria | Infaunal Succession
Stage 2 or 3; or
Stage 1 with physical
disturbance | Below SF Bay
Water Quality
Objective | Below Site-Specific
Risk-Based Human
Direct Contact
Exposure Criteria | | Potential
Adverse Effects | Toxic | Above SF Bay
Water Quality
Objective | Above Site-
Specific Risk-
Based Human
Direct Contact
Exposure Criteria | One or Both
Endpoints
(species) = Toxic | One or Both
Endpoints
(survival, growth) =
Significant Impacts | One or Both
Endpoints (survival,
growth) = Significant
Impacts | One or More
Test Species
Don't Survive | One or Both Test
Species Greater
Than TRVs
Protective of
Invertebrates | One or Both Test Species
Greater Than Site-Specific
Risk-Based Tissue Criteria | One or Both Test
Species Greater Than
Human Health
Consumption Criteria | Infaunal Succession
Stage 1 with absence of
physical disturbance | Above SF Bay
Water Quality
Objective | Above Site-Specific
Risk-Based Human
Direct Contact
Exposure Criteria | Comparison criteria protective of fish and wildlife were developed via foodweb modelling ## Lowest site specific effect concentration (LSSEC) based on outcomes of empirical assessment methods | | A. Water
Column
Toxicity | B. Elutriate
Total PAH Concentration | | Toxicity Water Interface | | E. Sediment-Water
Interface Test with
Mussel Embryos | Bioaccumul
Protective o | Body Burden from
ation Testing,
I Invertebrates
Ipoints) | G. PAH Concentrations
in Tissue from
Bioaccumulation
Testing, Protective of
Fish, Birds, and Marine | H. PAH Concentrations in Tissue from Bioaccumulation Testing, Protective of | |------------------------------|--|---|--|--|--|---|---|---|--|--| | | Bioassay | B1. Ecological B2. Human Receptors | | | | (2 endpoints) | F1. Survival | F2. Tissue
Concentrations | Mammals
(2 endpoints) | Humans
(2 endpoints) | | No Adverse
Effects | No toxicity
for elutriate
from
sediment
with 87,200
ug/kg | 87,200 ug/kg
below SF Bay
specific risk-b | n sediment with
had 1,087 ng/L;
WQO and Site-
ased criteria for
contact exposure | Non-toxic to
both species for
sediment
concentrations
up to 425,000
ug/kg | No observed
effect for
sediment
concentrations up
to 427,000 ug/kg | No observed effect
for sediment
concentrations up
to 427,000 ug/kg | Both species
survive for
sediment
concentrations
up to 425,000
ug/kg | Both Test Species
Below TRVs for
sediment
concentrations up
to 224,000 ug/kg | Site-specific tissue
criteria for sediment | Tissue concentrations
for both species
below EPA HH
Criterion for sediment
concentrations up to
224,000 ug/kg | | Potential
Adverse Effects | No higher
sediment
concentratio
n tested | 0 | er sediment
ation tested | No higher
sediment
concentration
tested | No higher
sediment
concentration
tested | No higher
sediment
concentration
tested | No higher
sediment
concentration
tested | Multiple TRVs
exceeded, in
Macoma tissue
only, for
sediment with
425,000 ug/kg | One protective prey
tissue criterion for birds
exceeded, in <i>Macoma</i>
tissue only, for sediment
with 425,000 ug/kg | EPA HH criterion
exceeded, in
<i>Macoma</i> tissue only,
for sediment with
425,000 ug/kg | Based on available data, the LSSEC is 425,000 μg/kg dry wt. It may be lower than 425,000 μg/kg , but no lower than 87,200 μg/kg dry wt. # Data evaluation framework combines three components: Bulk sediment PAH concentration relative to LSSEC (lowest site specific effects concentration) PAH source type Direct measurement of benthic condition and pore water PAH concentrations. | Sediment
Condition ¹ | Empirical Evaluation of
Potential Impairment of
Beneficial Uses
Bulk Sediment Concentration
(µg/kg total PAHs) | PAH Source Type | Potential Impairment of
Benthic Community,
Habitat and/or Water
Quality ² | Management
Recommendation
(Priority for Remedial
Evaluation) | |------------------------------------|--|---|---|---| | 1 | < 4,500 | Any | Any | No Remediation | | 2 | 4,500 - 44,792 (ERM) ³ | Urban Influence (UI) | Any | No Remediation | | 3 | 4,500 - 44,792 (ERM) ³ | Mixture of UI and Likely
MGP-Related | None | No Remediation | | 4 | 4,500 - 44,792 (ERM) ³ | Likely MGP-Related | None | No Remediation | | 5 | 4,500 - 44,792 (ERM) ³ | Mixture of UI and Likely
MGP-Related | Yes | High Priority | | 6 | 4,500 - 44,792 (ERM) ³ | Likely MGP-Related | Yes | High Priority | | 7 | 44,792 (ERM) - LSSEC | Urban Influence (UI) | None | No Remediation | | 8 | 44,792 (ERM) - LSSEC | Mixture of UI and Likely
MGP-Related | None | No Remediation ⁴ | | 9 | 44,792 (ERM) - LSSEC | Likely MGP-Related | None | No Remediation ⁴ | | 10 | 44,792 (ERM) - LSSEC | Urban Influence (UI) | Yes | Low Priority | | 11 | 44,792 (ERM) - LSSEC | Mixture of UI and Likely
MGP-Related | Yes | High Priority | | 12 | 44,792 (ERM) - LSSEC | Likely MGP-Related | Yes | High Priority | | 13 | > LSSEC | Urban Influence (UI) | Any | Low Priority | | 14 | > LSSEC | Mixture of UI and Likely
MGP-Related | Any | High Priority | | 15 | > LSSEC | Likely MGP-Related | Any | High Priority | #### Data used in evaluation framework - Sediment PAH nature and extent delineation - 129 sediment grab samples, 776 discrete sediment samples from vibracores - PAH source evaluation - Toxicity testing to empirically evaluate potential impairment - Water column, sediment-water interface, and benthic toxicity bioassays - Bioaccumulation testing - Sediment profile imaging (100 stations) - Pore water sampling - 21 Pore water/ surface water stations; co-located gravity cores - Analyzed three depth intervals: 0-0.5, 1.0-1.5, and 2.0-3.0 feet below mudline #### Application of framework to surface sediment conditions #### Application to conditions in 3 feet below dredge elevation #### Conclusions - Site sediments with total PAH concentrations >100,000 $\mu g/kg$ did not demonstrate potential impairment to beneficial uses of the waterway - No adverse effects at PAH concentrations much higher than "Ambient/BT" or other common screening values (e.g., ER-M = $44,800 \mu g/kg$) - Attributable to sorptive properties of SF Bay mud, reducing bioavailability consistent with pore water measurements - Empirical investigation approach, supplemented with food-web modeling, focused remedial evaluation on areas with conservative potential for impairment of beneficial uses #### Other presentations related to this investigation - Platform presentation by R. Jordan, Wednesday at 1:50pm in session A6: "PAH source evaluation of sediment in the vicinity of Pier 39, San Francisco Bay" - Identified three likely MGP-related PAH sources, a creosote source; both distinguishable from "urban influence" - Platform presentation by L. McWilliams, Thursday 9:40am in session E6: "In-situ pore water sample collection from multiple depth intervals to monitor contaminant bioavailability and/or remedial performance" - Innovative device collects in-situ pore water from three depth intervals - Focuses "effectiveness" monitoring on most bioavailable (i.e., dissolved) phase