# **PFAS Analytical Services**

# As the first-ever analytical laboratory accredited to test PFAS, Battelle has been serving clients since 2016.

DOD and DOE accredited

Provides EPA 537.1 and **EPA 533 for drinking water** 

> EPA 1633 in all matrices including tissues

The **Battelle** Difference

Expedited service: 72 hr - 28 day turnaround time

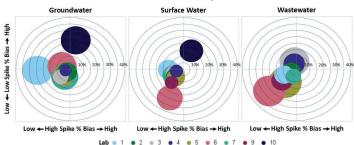
**Accreditation laboratory** assessments with no findings

Challenging or unique matrices

Standard Analytical Methods | Method Development | Specialized Forensics Passive Samplers | High Resolution Mass Spec

Per- and polyfluoroalkyl substances (PFAS) are a large class of chemicals widely used for many commercial and industrial applications, including aqueous film forming foams (AFFF), metal plating, plastic molds, photographic films, semiconductors and textile manufacturing. Many of these substances end up in the wastewater treatment plants (WWTPs) and landfills, which means these facilities also serve as passive receivers of PFAS. To tackle this emerging contaminant head on, experts at Battelle have been studying PFAS for nearly two decades.

### **Our Value to Clients**


At Battelle, we have highly trained expert chemists with a critical understanding of fluorochemistry concepts and forensic analysis to ensure defensible data generation. Given continuity of operations, the average tenure of a chemist at Battelle is 10 years.

We provide transparent data reporting to ensure supplied information can be used confidently and efficiently without issue. High quality data packages reduce the need to interpret complicated results.

# **Laboratory Quality and Assurance**

Battelle offers precision and accuracy of quantification to confidently measure concentrations to PPT levels to eliminate over/under representation.

### **Follow On Quality Work**



\*Graph is from a publicly available report (study by SERDP)

# **Source Discrimination and Establishing Background Using HRMS Analysis**

## Our Solution - PFAS Signature®

The Battelle-developed PFAS Signature® advanced analytical tool offers PFAS source differentiation and tracking using highresolution mass spectrometry (HRMS) techniques, in combination with PFAS targeted analysis and advanced statistical analysis. The identification of sources of contamination is based on:

- Chemical signature Age of release
- Isomeric profiles
- Fate and transport
- Manufacturing
- Transformation products



| OUR OFFERINGS                                                                                              |                       |                    |                                    |                 |                                               |                                                                                                                                          |                                                                                                    |
|------------------------------------------------------------------------------------------------------------|-----------------------|--------------------|------------------------------------|-----------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Holds national accreditations through DOD, DOECAP, NELAP, ELAP and several state level. Certified in AFFF. |                       |                    |                                    |                 |                                               |                                                                                                                                          |                                                                                                    |
| Method                                                                                                     | # of PFAS<br>Analytes | Reporting<br>Limit | Turnaround<br>Time                 | Accredited      | Matrices                                      | Distinguishing<br>Factors                                                                                                                | When to chose this method                                                                          |
| EPA<br>Method 1633                                                                                         | Up to 49              | Single ppt         | 72 business<br>hours to<br>28 days | Yes             | Solid, vapor,<br>non-potable<br>water, tissue | Most extensive data quality<br>and reporting requirements.<br>Most widely accepted<br>method for PFAS in non-<br>drinking water matrices | When you want the highest fidelity data suitable for independent validation; when required for use |
| B-15<br>Compliant<br>Method                                                                                | Up to 42              | Single ppt         | 72 business<br>hours to<br>28 days | N/A             | Solid, vapor,<br>non-potable<br>water, tissue | Predecessor method to<br>1633; similar approach<br>but does not have QC and<br>reporting requirements                                    | When you would like 1633 data but don't have the requirement to use it                             |
| EPA<br>Method<br>537.1                                                                                     | Up to 18              | Single ppt         | 72 business<br>hours to<br>28 days | Yes             | Drinking<br>Water                             | Standard list of PFAS analytes for PFAS. Most established method                                                                         | When you need to test<br>drinking water; analyte list<br>drives selection between<br>537.1 and 533 |
| EPA<br>Method<br>533                                                                                       | Up to 24              | Single ppt         | 72 business<br>hours to<br>28 days | Yes             | Drinking<br>water                             | New method for drinking water that expand list of analytes which couldn't be accomplished by 537.1                                       | When you need to test<br>drinking water; analyte list<br>drives selection between<br>537.1 and 533 |
| Battelle<br>Screening<br>Method                                                                            | Up to 49              | Low ppt            | 72 business<br>hours to<br>7 days  | No              | Non-potable<br>water                          | Presence/absence of target PFAS                                                                                                          | Range finding; process<br>monitoring; research<br>studies                                          |
| Non-<br>targeted/<br>suspect<br>screening                                                                  | Up to 600             | Qualitative        | 90 days                            | 1633<br>portion | Solid, vapor,<br>non-potable<br>water, tissue | Commercial analytical<br>services to expand<br>monitoring for less common<br>PFAS                                                        | Assess for products of incomplete combustion; mass balance studies                                 |
| PFAS<br>Signature®                                                                                         | Up to 600             | Qualitative        | 120 days                           | 1633<br>portion | Solid, vapor,<br>non-potable<br>water, tissue | First of its kind commercial<br>analytical tool which<br>incorporate suspect screening<br>and machine learning                           | Assess PFAS background<br>and sources; fill data<br>gaps in conceptual site<br>model               |
| Total<br>Oxidizable<br>Precursor<br>(TOP) Assay                                                            | Up to 49              | Single ppt         | 21 to<br>28 days                   | 1633<br>portion | Solid, vapor,<br>non-potable<br>water, tissue | Standard method;<br>recognized tool for<br>assessing total PFAS                                                                          | Drive PFAS to terminal end products                                                                |
| Modified ASTM<br>D7359-08<br>Total Organic<br>Fluorine (TOF)<br>Extractable<br>Organic F (EOF)             | Total F               | 20-50 ppb          | 72 business<br>hrs to<br>28 days   | No              | Solid, tissue,<br>liquid                      | Robust data quality and reporting requirements. The most widely accepted method for extractable organic F in solid matrices              | Assess product compliance and mass balance studies                                                 |
| EPA Method 1621<br>Absorbable<br>Organic F (AOF)                                                           | Total F               | 1-20 ppb           | 72 business<br>hrs to<br>28 days   | No              | Water/<br>aqueous                             | Robust data quality and reporting requirements. The most widely accepted method for adsorbable organic F in water matrices               | Nontarget organic<br>Fluorine content and<br>mass balance studies                                  |

We also offer complimentary tools to support your PFAS evaluation/investigation: **PFAS Air Insight™ Ambient Sampling Tool** - measures the amount of PFAS ambient air; **PFAS Insight® Passive Sampler** - an equilibrium regiment passive sampler used to measure select PFAS compounds in surface water (including seawater), sediment porewater, and groundwater.

Battelle experts will be your partner in developing analytical solutions and help you select a method at the lowest cost.

Contact us today to discuss PFAS methods and our full list of offerings.

