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Why ISS for PFAS?

* No feasible technologies mineralize PFAS in situ

* ISS treats soils onsite (source treatment)

* Dig and haul? ......... Expensive!

e Because we can!



We CAN Stabilize PFAS!

* ’ve tested ISS for 6+ years

* Sorengard et al. (2019) & Hale et al. (2017)

»Lab Study on AFFF-Contaminated soils using AC and commercial binders
» Leaching of PFOS & PFOA reduced by 98% by adding 2% AC with cements.

* Sorengard et al. (2021)

» Pilot- and Lab-scale studies: leaching results well-correlated (p < 0.001).
»Removal rate >97 % for PFOS & PFOA.

* McDonough et al. (2022)

» Bench-and field-scale data showed >99% decrease in total PFAS mass
leachability (mass basis; >98% mole basis) as




In Situ (ISS)




ISS Review™

e Stabilize:

»transfer from aqueous to solid phase.
.+ Solidify:
»encapsulate and/or coat sorbed PFAS

> decreases surface area

»improve handling and physical characteristics.

*EPA (2000); ITRC (2011)



Disadvantages of ISS

* Not Permanent!

» Cement will disintegrate
»PFAS will desorb

« Amendments INCREASE VOLUME!
» Requires landfilling




Materials & Methods



Amendments Used (Approximate Costs)

Binders/Cements

* Ordinary Portland Cement (PC) ($150/ton)
* Class C Fly Ash (FA)($150/ton)
* Ground-Granulated Blast-Furnace Slag (GGBS) (140/ton$)

Sorbent
* Biochar & Activated Carbon ($1,500-$2,000/ton)



Materials Tested™

* AFFF-Contaminated Soils: airports, tank farms

* Soils, sediments, sludges: metal platers, leather tanners, etc.

*spent GAC, RO concentrate, AFFF, biosolids



Mix & Cure (28 days)




3 Performance Criteria™

* Decrease hydraulic conductivity (K)
* 10°% cm/sec

* Increase Compressive Strength (UCS) —
* 345 kPa (50 psi1)
* Concrete 25,000-50,000 kPa (3,625-7,250 psi)

* Reduce leaching
* Target PFAS concentrations in leachate?
* Michigan 7 drinking water standards?

*TRC (2011)



Leaching Tests (Batch)

1311 (TCLP)-Toxicity Characteristic Leaching Procedure (CH:COOH)
Coming Soon...... PFOA, PFOS, PFBS, & GenX

1312 (SPLP)-Synthetic Precipitation Leaching Procedure (H,SO, & HNO,)



PFAS Analyses

* Soils & sediments - ASTM-D7968 or 537M with Isotopic Dilution
* Leachate - ASTM-D7979 with Isotopic Dilution



Results



2 AFFF-Contaminated Soils

pH % Water] % SOM | % Sand | % Silt | % Clay
Sand 6.6 3.7 0.3 91 g 1
Silty 6.4 16.5 5.5 14 46 40

Clay




Untreated Soils

Analyte (M7 DW MCLs) Ab?)::\g:temn Carions SlltznZ}:gg?Vg. S?Iilgd/légv)g.
Perfluorononanoic acid PFNA C9 68,000 21,000
Perfluorooctanoic acid PFOA C8 130,000 27,000
Perfluorohexanoic acid PFHxA C6 55,000 3,200
Perfluorooctanesulfonate PFOS C8 3,100,000 1,630,000
Perfluorohexanesulfonate PFHxS C6 307,000 6,300
Perfluorobutanesulfonate PFBS C4 38,000 830
Hexafluoropropylene oxide dimer acid HFPO-DA Co6 26,000 3,200

Y. 28 PFAS (ng/Kg) 6,250,400 3,052,880




SPLP: Silty Clay (dose=10%)

Avg. SPLP MI
Analyte Abbreviation Un%rfated A‘E];IIT)L P DW MCLs
(ng/L) (ng/L)
Perfluorononanoic acid PFNA 1,900 3.6 6
Perfluorooctanoic acid PFOA 3,700 5.2 8
Perfluorohexanoic acid PFHxA 3,400 7.0 400,000
Perfluorooctanesulfonate PFOS 99,400 12 16
Perfluorohexanesulfonate PFHxS 13,600 34 51
Perfluorobutanesulfonate PFBS 1,300 52 420
Hexafluoropropylene oxide dimer acid (GenX) HFPO-DA 6,900 39 370
> 28 PFAS (ng/L)| 212,060 253




SPLP: Sand (dose=10%)

Avg. SPLP MI DW
Analyte Abbreviation Ungtreated A‘;i;LP)L P MCLs
(ng/L) (ng/L)
Perfluorononanoic acid PFNA 610 ND 6
Perfluorooctanoic acid PFOA 1,000 4.8 8
Perfluorohexanoic acid PFHxA 200 ND 400,000
Perfluorooctanesulfonate PFOS 52,300 12 16
Perfluorohexanesulfonate PFHxS 280 ND 51
Perfluorobutanesulfonate PFBS 44 ND 420
Hexafluoropropylene oxide dimer acid (GenX) HFPO-DA 980 ND 370
> 28 PFAS (ng/L) 70,123 38




Dose-Response: Silty Clay

* PFNA ¢PFOA <PFHxA <PFOS ¢PFHxS ¢PFBS ¢ HFPO-DA
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Dose-Response: Sand

% Reduction in SPLP
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Varying PAC dose (sand)
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>2% PAC/cement increases leaching (Crane et al., 2014; Srivastava et al., 2016)



Varying PAC dose (sand)

% PAC/cement

Unconfined Compressive
Strength (psi)

0 320
1 1,230
2 1,410
3 1060
6 330
10 420

1% to 3% AC or Biochar increases strength (Na et al., 2021)




Miscellaneous Observations

1. Lime converts precursors to PFAAs
* CaO,+ H,0 — Ca(OH),, + Heat + High pH
* Confirmed with TOP assays

2. Small amounts of AC & Biochar (1% to 3%) increases strength and
decreases PFAS leaching

3. Higher PFAS concentrations in SPLP than TCLP

* Sulfate anion (SO,%) forms complexes with cured cement, which increases
porosity and surface available for leaching.



Conclusions

e ISS is effective for PFAS-contaminated soils

* Decreases RATES of PFAS leaching
* Decreases K
* Increases strength

* Recipes and doses should be determined for each soil.
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Questions

Email:
dan(@perivalloninc.com

daniel.cassidy@wmich.edu



mailto:dan@perivalloninc.com
mailto:daniel.cassidy@wmich.edu

