

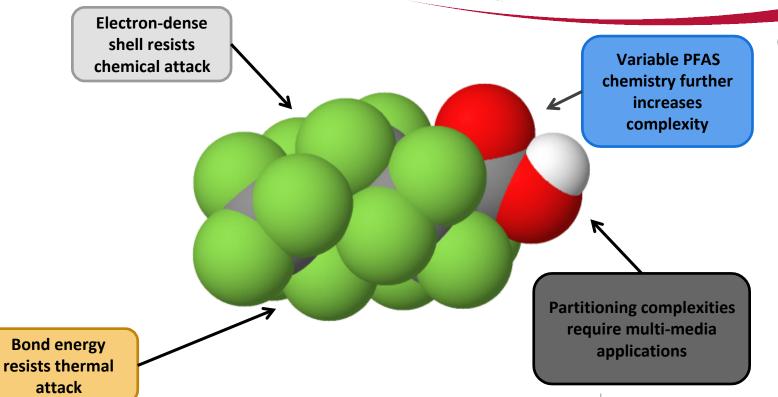
Pilot Scale Ball Milling of PFAS Impacted Soil from a Firefighting Training Area – Key Operational Parameters

Nicholas Battye, **David Patch**, Natalia O'Connor, Dylan Roberts, and Kela Weber (Royal Military College of Canada, Kingston, ON, Canada)

Lauren Turner and Bernard Kueper (Queen's University, Kingston, ON, Canada)

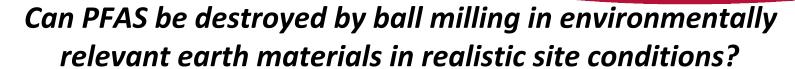
Stefano Marconetto and Tony Lyon (WSP Golder, Ottawa, ON, Canada)

Brenda Harris (Sarnia Technology Applications & Research, Imperial Oil Ltd., Sarnia, ON)



Why Are They Hard to Destroy?

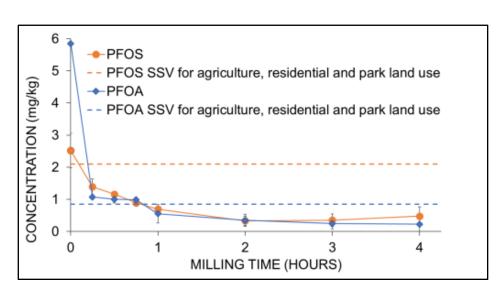
GOLDER



PFOS and PFOA Spiked Sands

AFFF Spiked Sands

AFFF impacted soils from a Canadian FFTA

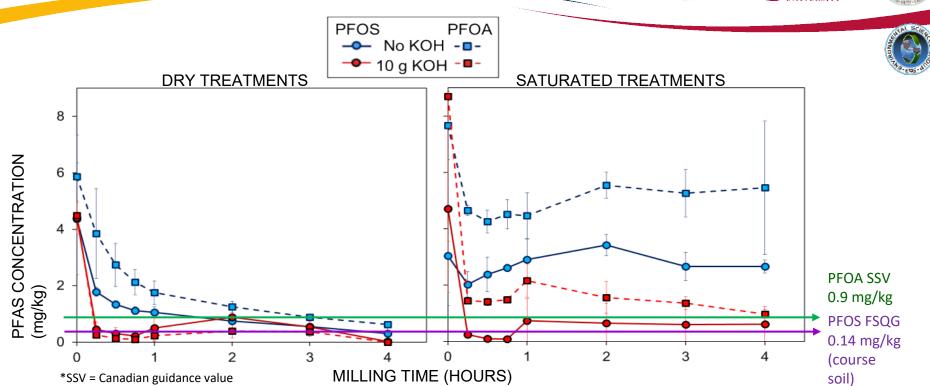


Success at Lab Scale

Science of The Total Environment Volume 765, 15 April 2021, 142722

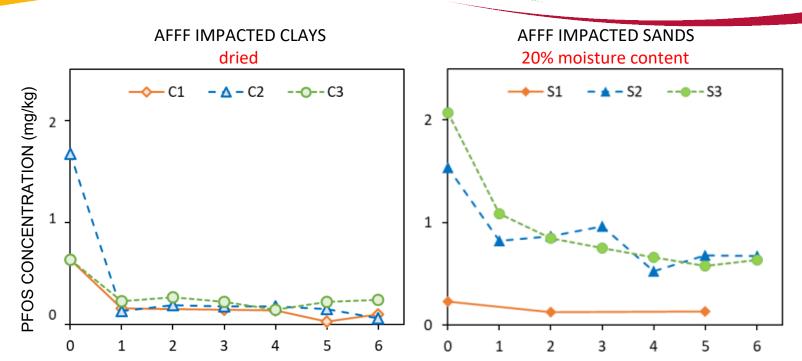
Mechanochemical remediation of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) amended sand and aqueous film-forming foam (AFFF) impacted soil by planetary ball milling

Lauren P. Turner ^a, Bernard H. Kueper ^a, Kevin M. Jaansalu ^{b, 1}, David J. Patch ^b, Nick Battye ^b, Omneya El-Sharnouby ^{a, 2}, Kevin G. Mumford ^a, Kela P. Weber ^{a, b} 유 B



^{*}SSV = Canadian guidance value 2018

Success at Lab Scale



Success at Lab Scale

Lab Scale Fluoride Recovery

L.P. Turner, B.H. Kueper, K.M. Jaansalu et al.

Science of the Total Environment 765 (2021) 142722

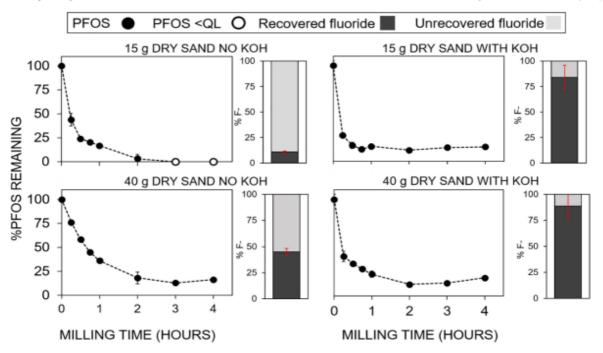
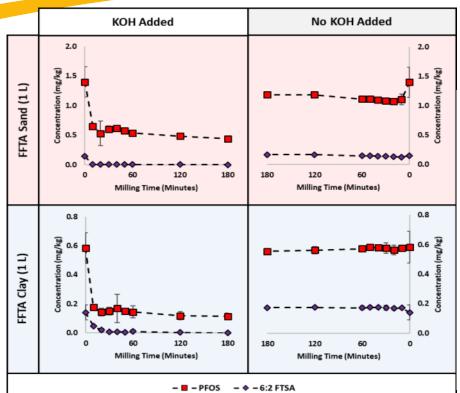


Fig. 3. Dry PFOS-amended sand treatment combinations destruction profiles and percent fluoride recovery. Error bars indicate ±one standard deviation. Concentrations below quantification limit (<QL).



Success at Horizontal Ball Mill (HBM) Scale

Volume 835, 20 August 2022, 155506

Use of a horizontal ball mill to remediate per- and polyfluoroalkyl substances in soil

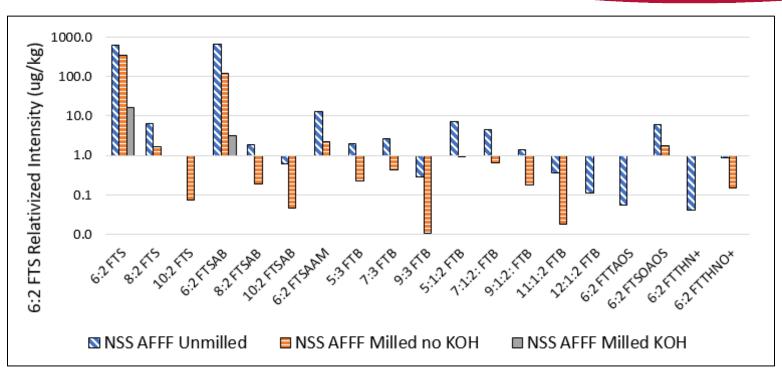
Nicholas J. Battye ^a, David J. Patch ^a, Dylan M.D. Roberts ^a, Natalia M. O'Connor ^a, Lauren P. Turner ^c, Bernard H. Kueper ^c, Michael E. Hulley ^b, Kela P. Weber ^a, ^c A 🖾

Show more 🗸

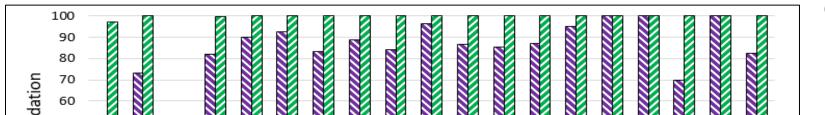
+ Add to Mendeley 📽 Share 🍠 Cite

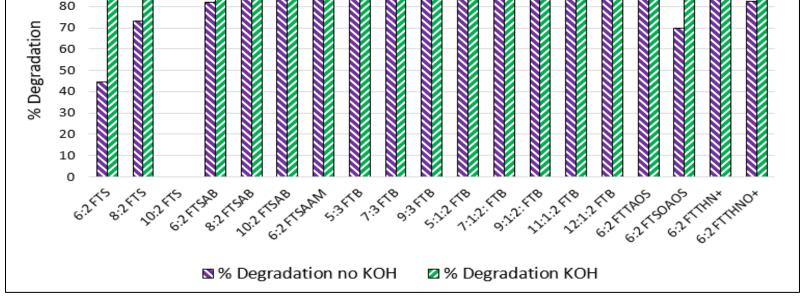
https://doi.org/10.1016/j.scitotenv.2022.155506

Get rights and content



Success at HBM Scale



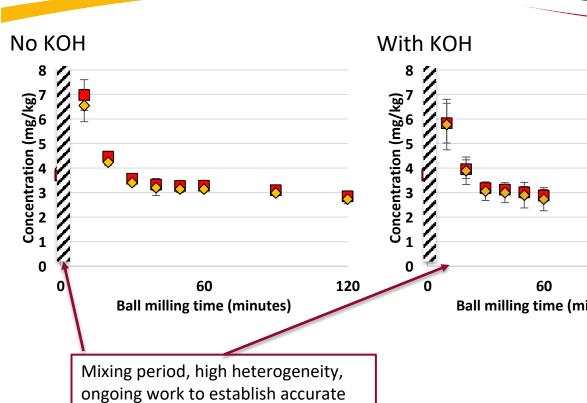

Success at HBM Scale

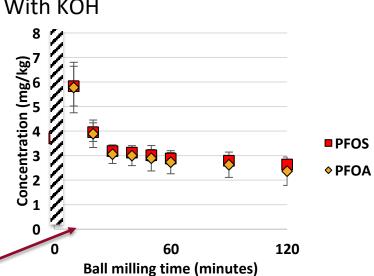
Industrial Scale Remediation

- Ball milling has been shown to successfully destroy PFAS at the <1L, 1L, and 25L scales
- Industrial scale remediation tested using 267L horizontal ball mill

Grinding media: mild steel balls (1.3 to 3.8 cm diameter).

RPMs: 42 (75% of the critical speed).

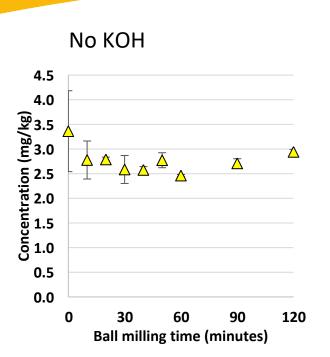


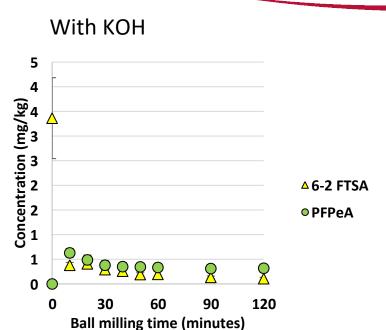


Results – PFOS/PFOA

Similar destruction of both PFOS and PFOA, with and without KOH

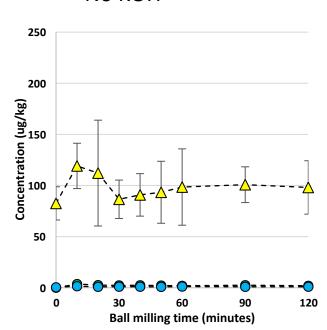
Destruction of both linear and branched PFOS isomers



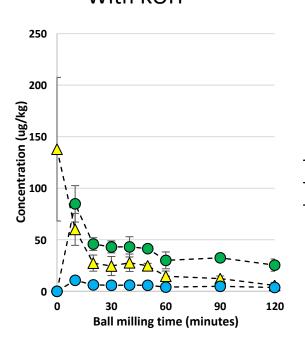

T=0 concentration

Results – 6:2 FTS

- Without KOH no destruction of 6:2 FTS occurs
- Addition of KOH allows for degradation of 6:2 FTS, with minor formation of PFPeA
- PFPeA is in turn destroyed by ball milling

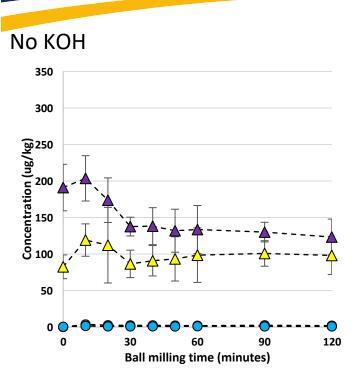


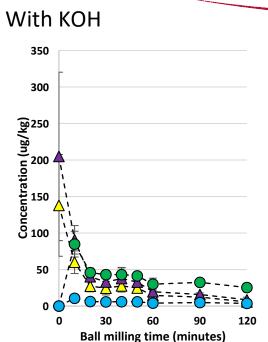
Results – National Foam

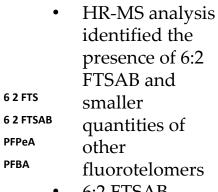


With KOH

- Targeted LC-MS analysis only reveals 6:2 FTS
- Addition of KOH with ball milling results in degradation of 6:2 FTS, with formation of PFPeA
 - Formation of PFPeA is substantially higher than 6:2 FTS, indicating substantial precursor load

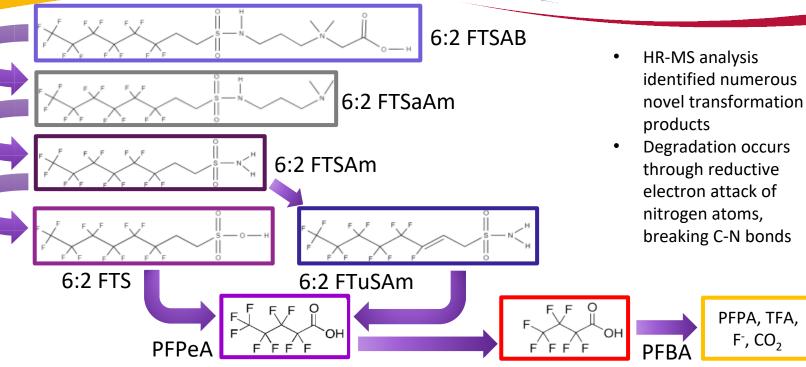





Results – National Foam High Resolution Analysis

- 62 FTS

PFPeA


- PFBA

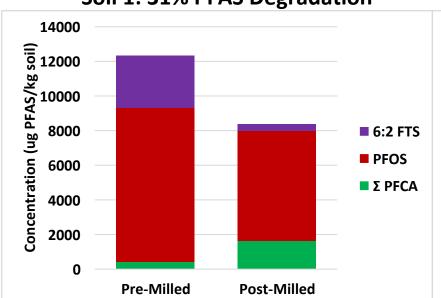
Results – National Foam Degradation Mechanism

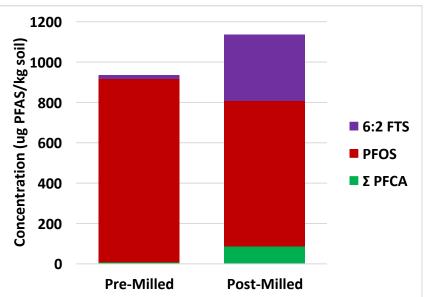
PFPA, TFA, F⁻, CO₂

Industrial Scale FFTA Soils

	Planetary Mill Scale (<1 L, Lab)	Horizontal Mill Scale (25 L, Lab)	Horizontal Mill Scale (265 L, Industrial)	
PFAS Spiked Sands	Success	Success	Success	
AFFF Spiked Sands	In Progress	Success	Success	
AFFF Impacted FFTA Soils	Success	Success	?	

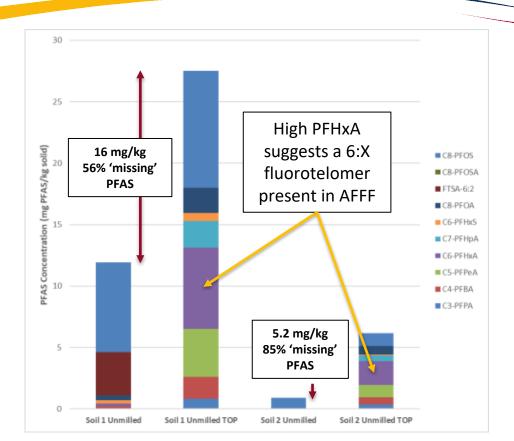
Initial Evaluation of Degradation




Made conclusive remarks difficult based on standard targeted analysis only

Soil 1: 31% PFAS Degradation

Soil 2: +18% PFAS 'Creation'



Characterization of PFAS on FFTA Soils

 PFAA precursors present in both types of soil

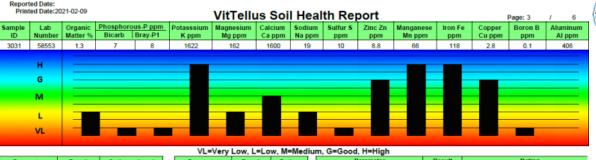
Total PFAS destruction estimates

• Free fluoride analysis – best evidence of PFAS destruction.

Trial	Fluoride (mg/kg)	Equivalent PFOS destruction (mg/kg)	Targetted analysis PFOS destruction (mg/kg)	
Soil 1, dry, spiked, 100:1 KOH (1)	12	19	35	
Soil 1, dry, spiked, 100:1 KOH (2)	12	19	13	

Discrepancies in mass balance imply hidden PFAS transformations and/or destruction.

Targeted analysis alone cannot be used to judge remedial effectiveness for these two soils.



Leachability and Soil Quality Health

- Soil health testing performed by A&L Canada Laboratories
- Synthetic precipitation leachability procedure (SPLP) performed by ESG

Parameter	Result	Optimum Level		Parameter	Result	Rating		Parameter	Result	Rating
CEC, meg/100g	13.6			pH	9.2	VH		0-1-11		
K/Mg Ratio	3.09	0.25-0.35		Buffer pH				Solvita CO2-C, ppm	5	
GFI	46	L		EC, ms/cm	0.18	VL				
%K	30.6	3-5		Saturation %P	3	L		Reactive C, ppm	151	
%Mg	9.9	10-20	1	Saturation % Al	0	G				
%Ca	58.9	65-72		Nitrate-N, ppm	1	VL		Soil Health Index	23	
%H	0	5-15		Chloride, ppm	7	VL		Soil Health Index	23	AL T W C H
%Na	0.6	<1	1	PMN, ppm	6		١.			

- 0-1: Very Low Soil Microbial Activity- Associated with dry sandy soils and little to no organic matter.
- 1-2.5: Low Soil Microbial Activity- Soil is marginal in terms of biological activity and organic matter.
- 2.5-3.5: Medium Soil Microbial Activity- Soil is in moderately balanced condition.
- 3.5-4: Ideal Soil Microbial Activity- Soil is well supplied with organic matter and has an active population of microorganisms.
- >4: Unusually High Soil Microbial Activity- Soil has very high level of microbial activity. May have excessive organic matter.

Leachability and Soil Quality Health

Soil Health Values	Soil 1 Unmilled	Sail 1 Millad	Soil 1 KOH Milled	Sail 2 Unmilled	Soil 2 Milled	Soil 2 KOH Milled	
3011 Health Values	3011 I Ollillilled	3011 I Willied	3011 I KOH WIIIIEU	3011 2 Offiffified	3011 Z IVIIIIEU	3011 2 KOH Willied	
Potassium (ppm)	1622	2032	6409	442	1010	5878	
Calcium (ppm)	1600	3370	2750	350	770	740	
Sodium (ppm)	19	107	156	6	140	79	
Iron (ppm)	118	216	192	54	156	140	
Aluminum (ppm)	406	835	907	1747	1986	2119	
Chloride (ppm)	7	43	118	7	53	254	
Cation Exchange							
Capacity (meq/ 100g)	14	26	34	4	9	20	
рН	9.2	9.0	10.4	7.1	8.0	10.2	
Soil Health Index	23 (Low)	24 (Low)	17 (V. Low)	16 (V. Low)	16 (V. Low)	10 (V. Low)	
Biological Quality	1 (V. Low)	1 (V. Low)	0 (None)	3 Medium	1 (V. Low)	0 (None)	
Organic Matter	5 (Low)	5 (Low)	2 (Low)	20 (Moderate)	7 (Low)	2 (Low)	
Mineralizable Nitrogen							
(lbs/ac)	12	12	6	36	16	6	
PFAS Leachability (%)	91	93	93	100	100	96	

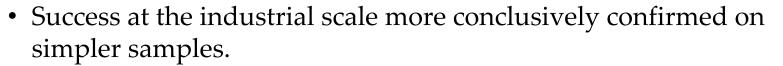
Legend

INCREASE

DECREASE

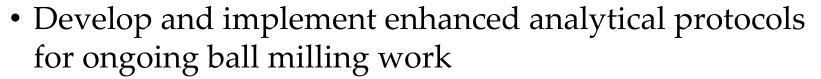
Key Operational Parameters

- Evaluation of success across multiple scales (PBM, HBM, industrial) has allowed for identification of key parameters
- PFAS destruction and fluoride recovery is highest with:
 - Dry soil
 - KOH amendment
- Upcoming work is being performed to optimize additional operational parameters



Conclusions

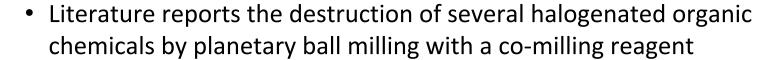
- Results identify KOH plays a key role in enabling destruction of polyfluorinated (fluorotelomer) PFAS
- Enhanced analytical protocols, including free fluoride analysis, TOP assay, and high resolution mass spectrometry is critical to understand extent of degradation, transformation, and destruction
- Ball milling has shown potential to be a promising technology for destruction of PFAS

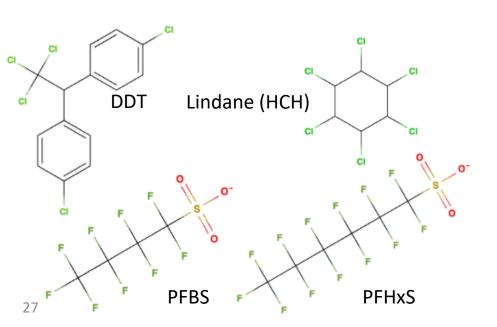


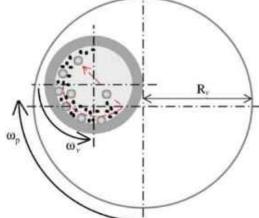
Next Steps

- Optimize operational parameters
- Conduct on-site pilot-scale testing

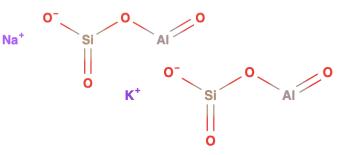
Questions

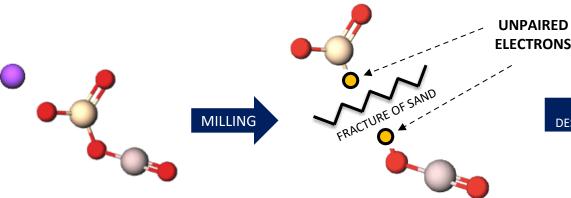


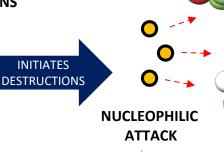

Mechanochemical Destruction via Ball Milling



Planetary ball mill


Mechanochemical reactions




Al₂KNaO₈Si₂

 Mechanical action promotes reactivity and surface chemistry states that are not attainable in ambient conditions

INITIATES

