Challenging ISCR PRB Approach on Industry Impacted by Chlorinated, Zinc and Cupper Bioremediation in Brazil

Consultoria e Engenharia Ambiental +55 11 3217 6300 | www.sgw.com.br

Battelle BioSymposium 2023 – Austin, TX May 11th – A10

Assessment | Remediation | Audit | Licensing | Consultancy

Presentation Outline

- ✓ Conceptual Model
- ✓ Hydrogeological Model
- ✓ Fate and Flow Modeling
- PRB
- ✓ New Cupper Leakage
- Lessons Learned

Site Location

Conceptual Model

Hydrogeological Model

Services

Risk Assessment

- ✓ On Site (workers)
 - ✓ GW concentrations below SSTLs
 - ✓ Subslab vapor above reference levels
- Off Site (residential):
 Future residential ocupation
- ✓ Quilombo Stream:
 - Zinc and VC Plumes will reach the stream;
 - Concentrations above the reference levels.

SVE System – Emergencial Approach

Valor de Referência: 6.000 µg/m³ (USEPA, 2020)

de 6.000 a 60.000 de 60.000 a 600.000

> 1.000.000

de 600.000 a 1.000.000

pH in Groundwater

Fate and Flow Modeling – Without Any Action

✓ ISCR (Provect-IR and Provect-IRM): both abiotic and biotic dechlorination

PRB Approach

ISCR PRB – PCE (Provect-IR) + Zinc (Provect-IRM)

Fate and Flow Modeling With PRB - ZINC

Fate and Flow Modeling With PRB - CHLORINATED

Performance Results – PRB03 Zinc Plume

Inorgânicos	PM-38			PO-01		PO	-02	PO-03			
Totais (µg/L)	abr-21	abr-21 mai-21		abr-21	set-21	abr-21 set-21		abr-21	set-21		
Nível d'Água (m)	8,64	8, 21	8,43	8,51	8,01	8,50	7,86	7,35	7,61	Valores de Referência	
рН	5,8	6, 6	8,3	4, 3	6,5	3,3	7,4	5,5	6, 8		
ORP (mV)	148,0	-282,4	-264, 5	375,0	-189,4	392,0	-362,2	184,0	-115,0		
Bário	135	135	270,7	< 10,0	68,6	< 10,0	72,96	153	62,22	700 ⁽¹⁾	
Boro	< 200	265	242	< 200	425,9	< 200	502,9	< 200	343,7	2400 ⁽¹⁾	
Cobalto	19,7	15,7	<5	29,6	60,7	7,82	<5	20	<5	70 ⁽¹⁾	
Cobre	< 30,0	< 30,0	<30	285	<30	1090	<30	31,3	<30	2000 (1)	
Níquel	< 10,0	< 10,0	<10	12,7	21,28	< 10,0	<10	< 10,0	<10	70 ⁽¹⁾	
Zinco	2170	< 50,0	<50	6990	<50	8080	<50	2830	<50	1800 ⁽¹⁾	

Performance Results – PRB03 Chlorinated Plume

VOC (µg/L)	PM-31		PM-41		PO-04		PO-05		PO-06		PO-07			Campo de
	abr-21	set-21	abr-21	set-21	jun-21	set-21	jun-21	set-21	jun-21	set-21	jun-21	set-21	Valores de Referência	Provas da Pirelli (ambiente fechado, ocupação residencial)
Nível ďÁgua (m)	9,40	10, 10	8,09	9,24	9,03	9,30	9,88	10,03	7,48	7,93	9,17	9,72		
рН	5,6	6,5	4, 9	6,0	6, 2	7,0	5,9	6,0	5,9	5,9	5, 8	6, 2		
ORP (mV)	104,0	-195,4	237,0	-60,8	170,8	-42,5	109, 7	-23, 5	192, 1	-127,6	373,0	-164,8		
Tetracloroeteno	225	< 2	27	75,8	5	< 2	44	41,3	14	< 2	123	< 2	40 (1)	669
Tricloroeteno	69	< 2	< 5	< 2	< 5	< 2	< 5	< 2	< 5	< 2	17	< 2	20 (1)	41
cis-1,2-dicloroeteno	114	306,4	< 5	< 5	< 5	< 5	5	< 5	< 5	< 5	61	305,6	50 ⁽¹⁾	ND
Cloreto de Vinila	4	12,9	< 2	< 0,3	< 2	< 0,3	< 2	< 0,3	< 2	< 0,3	< 2	9,29	2 (1)	93

New Leakage (2021) – WWTP Area – Cupper

Fate and Flow Modelling – Cupper

Services

Next Steps:

Keep monitoring and updating the fate and flow model and biogeochemical data

PRB was not designed for the new situation, need to be re-installed in the future

Full scale is being designed at this moment

Lessons Learned:

Hydrogeological and Fate and Flow modeling were the key for the effective actions

Cupper plume, even in very high concentrations, was not enough to affect the reactive zone formed by Provect-IR and Provect-IRM

Thanks!

Sidney Aluani saluani@sgw.com.br

Consultoria e Engenharia Ambiental www.sgw.com.br