

EVO Use in Hard Water aquifers: Implications and Strategies for Successful Substrate Distribution

Juan Fausto Ortiz-Medina, PhD, Lydia Ross, PE, Robert Borden, PhD, PE

Sixth International Symposium on Bioremediation and Sustainable Remediation Technologies

Experience you can Rely on, Products you can Trust™

About Presenter

- Juan Fausto Ortiz Medina, Ph.D.
 - Email: <u>ifortiz@eosremediation.com</u>
 - PhD in Environmental Engineering, North Carolina State University
- Experience
 - Environmental Microbiology
 - Environmental Biotechnology
 - Development of new products for water and soil remediation

About EOS Remediation

- Founded in 2002 and based in North Carolina, USA.
- Leader of emulsified vegetable oil (EVO) technology.
- Constantly improving our science-based remediation products:
 - Improve transport
 - Provide optimal nutrients
 - Reduce fouling
- Acquired by Redox Tech in 2023 to broaden our remediation expertise and technologies.

Target Contaminants for Bioremediation using EVO

- Chlorinated Solvents
 - Ethenes (PCE, TCE)
 - Ethanes (TCA)
 - Methanes (CT)
- Explosives (TNT, RDX, HMX)
- Nitrate (NO₃-)
- Perchlorate (ClO₄-)
- Hexavalent chromium [Cr(VI)]
- Radionuclides (TcO_{4}^{-} , UO_{2}^{+2})
- Acid Mine Drainage

Presentation objectives

- Challenges of using EVO in hard water
 - Higher oil retention
 - Nutrient sequestration
 - Potential fouling

 Solutions to overcome effects of hard water and optimize EVO injection

Water Hardness

- High concentrations of divalent ions (mainly Ca²⁺ and Mg²⁺)
- Typical definitions:
- Soft: 0-60 mg/L as CaCO₃
- Moderately hard: 61-120
 mg/L as CaCO₃
- Hard: 121-180 mg/L as
 CaCO₃
- Very hard: >180 mg/L as
 CaCO₃

Source: U.S. Geological Survey

pyright © 2023 EOS Remediatior

Long-lasting substrate: Emulsified vegetable oil (EVO)

 Soybean oil emulsion, homogenized to form microscopic oil droplets.

Zeta potential changes due to hard water

- Zeta potential (ζ) estimates charges that move along with each suspended particle (oil)
- Higher $|\zeta| \longrightarrow$ more likely to repel each other
- Higher concentration of divalent ions result in double layer compression which decreases | ζ |

Oil retention to estimate distribution effectiveness

- Column tests are used to estimate maximum oil retention (OR_M) in aquifer.
- 3 PV of diluted EVO + 3 PV chase water.
- Typical values range from 0.0004 (coarse grained sand) -0.01 (clayey sand) g soil/ g aquifer material

Coulibaly and Borden (2004

Higher CaCl₂ = Higher oil retention

Very hard water increases oil retention by at least 4 times

www.EOSRemediation.com

Why is Good Oil Distribution Critical?

- Higher retention demands more oil (or more chase water) to achieve proper distribution and an acceptable influence radius.
- Soybean oil hydrolysis
 - _o 1 glycerol (C₃H₈O₃)
 - 3 long chain fatty acids (LCFA)
 - Fermentation releases both H₂ and acetate
- H₂ is required for reductive dechlorination (DCE and VC conversion to ethene), and it does not travel far from retained oil.

Solutions to decrease oil retention

- If possible, calculate OR_M accurately.
- Dilute substrate injection with additional chase water
 - Typical goal: 2% v/v EVO
- Soft water can be used
 - Simple, divalent cations will be diluted
 - May pose significant additional cost depending on the source of water.
- Use of chelators
 - Small concentration added will capture divalent ions and restore | ζ |

Chelator addition to improve EVO mobility

Addition of a biodegradable chelator (1:1 molar ratio, chelator:CaCl₂)
 increases | ζ |, reduces oil retention and slightly improves soil permeability

Sequestration of nutrients (phosphate) by hard water

 As P is a macronutrient, sufficient concentrations must be present when C substrate is added

- Redfield ratio C:N:P = 106:16:1
- Potential need to add additional nutrient solution (e.g. PLUS) alongside EVO.

Fouling due to hard water

Biofouling

- Growth of undesirable microorganisms
- More noticeable close to injection wells and zones with electron acceptors such as O₂ and NO₃⁻
- Chemical (scaling)
 - LCFA precipitates with Ca⁺², Mg⁺², Fe⁺², Mn⁺², forming soap scum.
 - bioavailability

$$2C_{17}H_{35}COO^{-} + Ca^{2+} \longrightarrow (C_{17}H_{35}COO)_{2}Ca$$

Solubility: 0.4 g/L Hardness threshold ~66 mg/L CaCO₃

Xe et al. (2011)

Fouling prevention: Use of alternative substrates

- Other substrates may pose a viable alternative to EVO if conditions frequently favor gunk formation.
- ABC Olé by Redox Tech:
 - Consists of emulsified fatty acid esters:
 no free fatty acids to interact with Ca²⁺
 - Lower surface tension and viscosity:
 no chase water needed
 - Fermentation begins immediately:
 no need to wait for hydrolysis to occur
- Substrate choice will ultimately depend on needs: long-lasting substrate vs. potential fouling/distribution limitations.

Solutions to remove fouling

- Addition of chemicals to destroy fouling materials
- EOS CLEAN:
 - Chelator:Capture divalent ions
 - Organic solvent:
 Solubilize scum/oil-based materials
 - Detergent:
 Emulsify oil particles, break biofilms

Removing synthetic gunk (potassium oleate) using CLEAN

 ¼ column filled with potassium oleate + soil

 3 PV water, 0.5 PV CLEAN, backwash, then 3 PV chase water

* 1 PV=~50 mL

w.EOSRemediation.con

Copyright © 2023 EOS Remediat

Removing synthetic gunk (potassium oleate) using CLEAN

Observed Dissolution of gunk layers:

Before CLEAN injection

During CLEAN injection and backwashing

After chase water was injected

½ column filled with gunk from an injection well+ soil

3 PV water, 0.5 PV CLEAN, backwash, then 3 PV chase water

* 1 PV=~50 mL

Copyright © 2023 EOS Remediation

1/3 original permeability recovered In both cases, permeability increased ~3-fold

20

Removing injection site 'gunk' using CLEAN

Observed Dissolution of gunk layers:

Before CLEAN injection

During CLEAN injection and backwashing

After chase water was injected

Gunk is complex, several solutions/treatments may be needed to completely restore injection conditions

Rehabilitation of injection wells using CLEAN

- Remediation site to remove chlorinated compounds
 - 2009: Molasses injection
 - 。 2013: EVO (2% v/v)
 - 2018: 2nd EVO injection (2% v/v)
- During second injection event, permeability decreased substantially
 - Recovered fouling material suggested fouling due to hard water conditions
 (2,200 mg Ca²⁺/kg solid material, 60% dry solids, 40% moisture)
- Mixing solid material with concentrated CLEAN (1:6, solids:CLEAN) broke material in 3-5 minutes
- Pilot test suggests a 5x increase in flow rate
- Full-scale rehabilitation ongoing

Conclusions

- Hard water must be considered as an important variable when injecting EVO to treat contaminants
- Effects of hard water:
 - Increase EVO particle size and oil retention (higher EVO demand)
 - Capture of essential nutrients (phosphate).
 - Formation of fouling material
- Pre-treatment to remove hardness is desirable
 - Use of chase water
 - Chelators
 - Use of alternate substrates
- Restoring products (e.g. EOS CLEAN) to movilize oil/ destroy fouling can help in rehabilitating injection points

Questions

Thank you!

Fausto Ortiz-Medina, PhD Research Associate <u>ifortiz@eosremediation.com</u>

Brad Elkins, PG
Director of Technical Sales
belkins@eosremediation.com

www.EOSRemediation.com

Supplemental slides

www.EOSRemediation.co

Early Measurements of Maximum Oil Retention (OR_M)

Aquifer Material	Emulsion	Test Condition	Maximum Retention (g/g)	Reference
Fine clayey-sand	Homemade	Lab Column	0.0054	Coulibaly and Borden, 2004
Fine clayey sand amended with kaolinite	Homemade	Lab Column	0.0061	Coulibaly and Borden, 2004
Fine clayey sand amended with kaolinite	Homemade	Lab Column	0.0095	Coulibaly and Borden, 2004
Clayey sand alluvium	EOS® 598B42	Lab Column	0.0037	Borden, 2007a
Low K, weathered rock	EOS® 598B42	Field (estimated)	0.0030	Borden et al., 2007
Coarse grained sand and gravel	EOS® 598B42	Field (estimate)	0.0004	Kovacich et al., 2007
Medium grain sand	EVO	Lab Column	0.0024	Konzuk et al., 2006

Factors Limiting Treatment – Under-Estimate Maximum Oil Retention

 New data shows some sites with very high oil retention

 Cause not completely understood

Thanks to Microbial Insights for most data!

Factors Limiting Treatment – **Under-Estimate Maximum Oil Retention**

Hard Water

- $_{\circ}$ High Ca⁺²/Mg⁺² → low zeta potential
- Low zeta potential → higher oil retention
- At hard water sites, measure oil retention with groundwater from site

Note: buffer / base addition increases hardness

Zeta Potential

Colloid	Zeta Potential (mV)		
	DI Water	CaCl ₂	
SA17 (15-23')	-29.4	-8.5	
SA17 (30-40')	-22.3	-7.5	
OU2 (37-40')	-29.9	-12.2	
EOS 598B42	-43.0	-10.3	

EVO Retention

Colloid	Oil Retention (g oil /g soil)		
	DI Water	CaCl ₂	
SA17 (15-23')	0.003	0.013	
OU2 (37-40')	0.014	0.038	

ww.EOSRemediation.co

Changes in particle size due to hardness

Addition of a biodegradable chelator (1:1 molar ratio, chelator:CaCl₂)
 increases | ζ |, reduces oil retention and slightly improves soil permeability

Mobilized small particles

Sequestration of nutrients (phosphate) by hard water

 Ca²⁺ reacts with ions such as phosphate. Minerals such as hydroxyapatite are formed, which sequester phosphate and potentially cause scaling.

