

Optimizing Remediation in Bedrock: Lessons from Successful Injection Projects Paul M. Dombrowski, P.E.

Bedrock Remediation Challenges

- Incomplete understanding of groundwater flow and contaminant transport
- Difficulties in site characterization

Cost of investigation / remediation

- Unrealistic remedial objectives
- Selected remedy is ineffective

Characterization and Remediation of Fractured Rock (FracRx-1) http://fracturedRX-1.itrcweb.org

Bedrock Remediation

Remedial design based on conceptual site model

- Where is the contamination?
- Where is it traveling?
- How did it get there?
- What are proposed amendments?
- How do geologic features impact above questions?
- Objective: maximize contact between contaminants and remediation reagents
- Injected amendments likely to follow path similar to groundwater flow

Site 1 - Setting

- Site previously contained a 500-gallon UST to store waste oil generated during vehicle maintenance (removed in 1991)
- Petroleum hydrocarbons, LNAPL, and PCE measured in soil & groundwater
 - Focused excavation addressed LNAPL
 - CVOCS detected in bedrock 25 120' bgs
- Site Geology
 - 15-20 Feet Till (sandy upper till & dense basal till)
 - Granite Bedrock

Site 1 – Bedrock

Initial Bedrock Investigation (1997-2000)

- Outcrop fracture survey
- Bedrock Core Extraction
- Borehole Geophysics (2 locations)
- Fracture Permeability Test
 - 4.3x10⁻⁵ to 2.6x10⁻⁴ cm/s
- Interconnectivity Testing
- Bedrock Porosity (0.17%)
- Bedrock Packer Sampling

Site 1 – ISCO (2000-2001)

Legend

- Fenton's Reagent
 - H2O2 (5-15%) + Iron Catalyst (ferrous sulfate) + Acid
 - Produce Hydroxyl Radicals (OH•)
- Considerations for Fenton's Reagent
 - Acidified to Keep Fe in Solution
 - Exothermic reaction
 - Pressure build up in subsurface
- 20 overburden injection wells
- 31 bedrock injection boreholes

Site 1 – ISCO (2000-2001)

- 2 Injection Events
 - October 2000 (H₂O₂ to 16 BR points)
 - March 2001 (H₂O₂ to 21 BR points)
- 60% of H2O2 injected in 2 points

 Most monitoring wells did not show influence or change in CVOCs

Site 1- Refine Bedrock CSM

Record of Decision:

- Enhanced Reductive Dechlorination (10+ years post ISCO)
- Objective: Understand Each Borehole
- Borehole geophysics at all boreholes where possible (~20)
 - caliper, fluid temperature, fluid resistivity, natural gamma, optical and acoustic televiewer, and heat pulse flow meter
 - installed new wells/boreholes
- Packer sampling of water bearing fractures
- Interconnectivity Testing
- Two different plumes identified
 - RI/ROD only had one plume

Site 1 – Revised CSM & Plumes

West Bedrock Plume: Shallow <50 ft

- Geochemical signatures differed between plumes
- ROD treatment zones missed one plume & only included a portion of the other
- Treatment Zones modified

South Bedrock Plume: Deep >50 ft

Site 1 - Remediation

- Large droplet EVO (SRS®-FRL) with added sodium lactate (QRS®-SL)
 - Slow-release & fast-release electron donors
 - Bioaugmentation
- 17 Open Boreholes for Injection
 - Volumes specified for each borehole & each fracture zone
 - 73 separate fracture zones
 - Inflatable packers used to target fractures 21-120' bgs
 - Injection choreography with points sequenced based on connectivity testing

Enhanced Reductive Dechlorination

- Injected over 9,500 gallons (EVO + Lactate & Chase Water) with 37 L DHC
 - Average o.6 gallons per minute
 - Inject into 3 -4 boreholes simultaneously
 - 21-day injection event
 - Same volume as 2 ISCO events
 - <u>Each injection borehole</u>
 <u>received design volume</u>

Site 1 – Performance

3 years post injection - Elevated ethene + DHC present

Post-Injection DHC Counts (cell / liter)				
Well	1 year	2 years	2.5 - 3 years	
BR-35D2	<2.6E+03	4.0E+04	3.0E+04	
MW-33D	2.0E+05	8.0E+04	1.0E+04	
BR-11D	6.0E+04	6.0E+04	1.0E+05	
BR-31	2.0E+05	2.0E+04	n/s	
BR-3D	<1.3E+04	1.0E+06	4.0E+04	
BR-19D2	5.0E+06	1.0E+06	1.0E+05	
BR-37D2	4.0E+04	8.0E+03	n/s	
MW-35D	4.0E+04	5.0E+04	n/s	
BR-07	n/s	2.0E+07	1.0E+05	
MW-03D	2.0E+08	4.0E+07	6.0E+05	
MW-03D2	n/s	2.0E+03	n/s	

Site 1- Performance

South Bedrock Plume

Site 2 - Setting

- Former manufacturing site
- CVOC impacted bedrock
 - sandstone, shale, siltstone, mudstone
 - groundwater flow primarily in secondary porosity

CVOCs observed to the west & southwest

ug/L	MW-11	MW-18
1,1,1-TCA	17,000	6,000
1,1-DCE	21,000	25,000
TCE	23,000	17,000
cis-DCE	14,000	39,000

Site 2 - Objectives

Reduce Source Area CVOC concentrations

Below 1% NAPL solubility

Establish natural attenuation conditions

- Reducing trend for CVOC concentrations
- Wells in injection area/source area
- Wells downgradient of injection area (50 to 200 feet)

Site 2 – Selected Remedy

Enhanced In-Situ Dechlorination

- ISOTEC fine-tuned the design
- Low pressure injection of liquid amendments to preferentially delivery to existing fractures

EISD Remediation		
Area Treated (sq ft)	17,000	
Injection Interval (ft bgs)	25 - 55	
Injection Locations	12	
Injection Volume (gal)	34,000	

Sequential injection of multiple EISD amendments

- Sodium Lactate (QRS™-SL-Plus with NutriPlus™): accelerate reducing conditions
- Small Droplet EVO (SRS-SD®): allow migration of organic carbon
- Large Droplet EVO with ZVI (SRS®-ZVI): keep EVO with ZVI in source area
- Blended Bioaugmentation culture with DHC & DHB
- pH Buffers

Site 2 - Drilling

ISOTEC's scope included installation of 10 new injection boreholes

- Recommended geophysical assessment
- Client decided not to proceed
- Next best thing = hire an experienced driller
 - ISOTEC field scientist and driller in constant dialogue on rates of advancement, exertion of rig, "feel" of the bedrock
 - Injection was limited in intervals where driller said "not many fractures" or "pretty hard down there"
 - Injection at lower pressures observed in intervals where driller noted more potential fractures

Site 2 – Results

- 3 years of post injection
 - rapid reduction of CVOCs
 - abiotic & biotic

>99% reduction in total CVOCs in all source area wells

Bedrock Site Results

- Reductive dechlorination lines of evidence observed 90-200 feet from injection area ~2 years after injection
 - increases in dissolved iron
 - decrease in sulfate
 - detection of lesser chlorinated VOCs
 - decrease in total CVOC concentration

Summary

- Successful remediation can be performed in bedrock
- Tailor remedial design and reagents to site-specific needs
 - Conceptual Site Model
 - Harness advantages using multiple reagents
 - Fast-acting + persistent reagents
- Geology assessment
 - Geophysics
 - Geologic logging

Acknowledgements

ISOTEC Field Crews for adaptability & safety-first culture

Tom Musser

Prasad Kakarla, P.E.

Mike Temple

Dick Raymond

Mike Lee, Ph.D.

Michael Free

Curt Weeden

Thank you

Chemical Oxidation

Bioremediation

Activated Carbon Injectates (BOS 100® & BOS 200®)

Soil Mixing (Chemical Reagents & Stabilization)

Metals Remediation Bedrock Injections

Paul M. Dombrowski
Senior Remediation Engineer, Director
pdombrowski@isotec-inc.com
617-902-9383

Treatability Laboratory