

Rhamnolipids Compositions for Hydrocarbon-Contaminated Soil Remediation: *Part II*

Stepan: Ginger Ren, Scott Compston, Kris Ayres,

Kendall Wilson

Lehigh University: Derick G. Brown, Pan Ni

Rhamnolipid Chemistry and Rhamnolipid-Assisted Bioremediation Mechanism

Hydrocarbon and rhamnolipids interaction with soil during the bioremediation process adapted from Fenibo (2019)

Conducting Lab and Field Studies in Parallel

Objective: To collect data from both the lab and field to validate the concept of using rhamnolipid to improve indigenous bacteria and degrade hydrocarbon in soil.

Comparative Study

Laboratory study using simulated biopiles in a continuous pulse-flow respirometer

On-site field study using ex-situ biopiles

Experimental Variables

- Rhamnolipid concentration (0.1, 0.5, and 1g RL/kg soil)
- Nutrient addition (NH₄CI)
- Commercial benchmark Enzymes (field trial only)

Laboratory Setup – Continuous Oxygen Uptake Monitoring

Respirometer can monitor eight soil samples simultaneously

Lab Respirometer Results Over 193 Days (4650 hours) of Operation

Cumulative Oxygen Uptake

- Cumulative oxygen uptake
 - Indication of bacteria activity in the soil
- Scheduled mixing and treatment
 - Aeration and water
 - Nitrogen source
 - > Rhamnolipid

Impact of Mixing, Amendments Applied to the Soil Bottles

- Oxygen uptake rate (calculated)
 - Easier way to look at the impact of mixing and amendment addition
- Scheduled mixing and treatment
 - Aeration had a bigger impact at the beginning of the experiment
 - The first two RL addition showed a significant boost in bacteria activity
 - Activities of bacteria increase as increase the dosage of rhamnolipid

TPH from the Lab Data by GC

- Method:
 - ➤ GC/FID following EPA 8015C
- Results:
 - No significant impact of Rhamnolipid addition on the TPH

Lab VOC and SVOC Analysis Before and After 193 Days

3000 TPH did not show significant impact of RL treatment

Treated soil showed slight (15%) VOC/SVOC reduction compared to untreated

Field Study Design

- Pile size: 1000 kg soil/pile, 1.5m x 1.5m concrete pad
- 5 Pairs of Treatments
 - 2x control (no amendments)
 - 2x nutrient control
 - 2x RL @ 0.5 g/kg
 - 2x RL @ 1.0 g/kg
 - 2x Enzyme @ 10 g/kg
- Monitoring/Sampling plan:
 - Moisture meter (weekly measurement)
 - Temperature (daily measurement)
 - Nutrient (External Lab, every 3 wks)
 - Total organics (External Lab, every 3 wks)
 - Initial/final bacteria (External Lab)
 - Hydrocarbon analysis (External Lab, every 3 wks)
- Timeline: Aug 2022 Oct 2023

Field Soil Pile Setup

Inspired by Nature. Enhanced by Science.

TPH Analysis/Results (70 days) of Field Trial in Canada Showed Positive Impact of RL and Enzyme Treatment

- Field vs. Lab
 - Less mixing
 - Air vs. oxygen
 - Inconsistent moisture level due to rain and condensation
 - Only initial treatment and 2month experiment/data collecting window
- Results
 - Adding nutrients only had almost no impact
 - Higher (1g/Kg) RL dosage showed 18% more HC reduction than the untreated
 - Better results than the lab
 - Comparable results with the commercial enzyme solution

Additional Lab Soil Tests

Texas diesel-contaminated soil

 Contamination level >15%, the addition of RL has no impact due to the extremely low population of indigenous bacteria

New Jersey aromatic solvent contaminated soil

 Contamination level <1% (0.5%), the addition of RL seems to have no detectable impact of increasing the biodegradation of HC but other organics in the soil

Conclusions and Next Steps

Conclusions:

- ✓ Rhamnolipid addition can promote bacterial activity in hydrocarbon contaminated soil
- ✓ Rhamnolipid was most effective in helping indigenous bacteria remediate hydrocarbon when the contamination level was in an intermediate range (1-15%)
- ✓ Field results showed better remediation than the lab study (ideal conditions in the lab enabled bacteria activity in the absence of RL)

Next steps:

- Complete the second part of the field trial (2023)
- > Seek partnerships more field pilot trials

Acknowledgements

Stepan

Jason Keiper
Sangeeta Ganguly-Mink
Matt Levison
Elodie Shaw
Faith Savanhu
Alhad Phatak

Aaron Sanders

Inspired by Nature. Enhanced by Science.

Appendix 1. Lab TOC vs. TPH

Appendix 2. Field TOC vs. TPH

