

Solid Phase Colloidal Organic Amendments Promote Sustained Biodegradation in Permeable Reactive Barriers

Paul Erickson, Sophia Nguyen, John Freim, Ryan Moore (REGENESIS), Joel Parker (Hamp, Mathews & Associates)

May 9, 2023

Overview

Enhanced Reductive Dechlorination

Coupling ERD With CAC

New Donor Introduction Field Demonstration

Conclusions

Enhanced Reductive Dechlorination (ERD)

Bioremediation of halogenated contaminants

- Select microbes facilitate dechlorination
- Require H₂, produced by fermenters

ERD + Colloidal Activated Carbon (CAC)

- Rapid sorption, immediate reduction in concentrations, mass flux
- Minimal flux of CVOC daughters
- Allows for biodegradation within smaller footprint
- Long-term CVOC
 treatment through
 biotic and abiotic
 degradation pathways

Bioremediation Amendment Candidates

Comparing Hydrogen Sources

Donor Type	Examples	Application Method	Distribution	Persistence	Compatible with Activated Carbon
Soluble	Lactate, Molasses	Low Pressure	Excellent	Poor	Yes
Emulsion	EVO, 3DME	Low Pressure	Excellent	Moderate to Good	No
Solids	Cellulose, Chitin	High Pressure	Poor	Excellent	Yes

Bioremediation Amendment Candidates

Comparing Hydrogen Sources

Donor Type	Examples	Application Method	Distribution	Persistence	Compatible with Activated Carbon
Soluble	Lactate, Molasses	Low Pressure	Excellent	Poor	Yes
Emulsion	EVO, 3DME	Low Pressure	Excellent	Moderate to Good	No
Solids	Cellulose, Chitin	High Pressure	Poor	Excellent	Yes
Colloidal Solid	AquiFIX Long-Lasting Colloidal Electron Donor	Low Pressure	Excellent	Excellent	Yes

Colloidal Solid Donor Attributes

- Solid, colloidal (0.5 micron) organic substrate
- Blended with fast-release components
- Includes micronutrients (vit. B-12)
- Co-injectable with CAC under low pressure
- Slow release of TOC for 10+ years

Demonstrating Donor Longevity

- 1000 mL Jars
- 20 g of organic substrates added
- Anoxic, spiked with BDI+
- 10% of volume replaced every 2 weeks
- Regular monitoring by TOC
- Early points also included volatile fatty acid analysis

Demonstrating Donor Longevity

- 1000 mL Jars
- 20 g of organic substrates added
- Anoxic, spiked with BDI+
- 10% of volume replaced every 2 weeks
- Regular monitoring by TOC
- Early points also included volatile fatty acid analysis
- TOC release for 10+ years

Case Study Site Overview

- Site in Michigan
- Manufacturing and Distribution Facility
- Large Plume
 - High mg/L CVOC, 1,1,1-TCA and 1,1-DCE
- Comingled plume with LNAPL, resulting in cis-DCE, VC
- Interesting geology (esker), high mass, GW flux

Application Details

SPMW-12

PRB Length	20 feet
Injection Interval	17.5 – 27.5 feet bgs
Amendments	
AquiFix	2,000 lbs
BDI	9 liters
Total Mix Volume Applied	1,475 Gallons

Application Details

SPMW-12

PRB Length

Injection Interval

Amendments

AquiFix

BDI

Total Mix Volume Ap

Application Details

PZ20-73

PRB Length	20 feet
Injection Interval	17.5 – 27.5 feet bgs
Shallow, high-mass	17.5 - 22.5
flux zone	feet bgs
Deep, extreme mass-flux zone	22.5 – 27.5feet bgs
Amendments	
AquiFix	2,000 lbs
PlumeStop	1,434 lbs
BDI	9 liters
Total Mix Volume Applied	1,887 Gallons

SPMW-12 (Colloidal Donor)

- TCE
- cDCE
- V(
- Ethene
- Total CI-Ethenes
 TOC
 TOC
- TCE transformed after 3 months
- Over 90% cVOC removal after 2 years, steady TOC
- Vinyl chloride reductase (VCR), DHC look strong

SPMW-12 (Colloidal Donor)

- PCE
 TCE
 cis DCE
 VC
 Ethene
- Total Molar Concentration
- TCE transformed after 3 months
- Over 90% cVOC removal after 2 years, steady TOC
- Vinyl chloride reductase (VCR), DHC look strong

SPMW-12 (Colloidal Donor)

- TCE transformed after 3 months
- Over 90% cVOC removal after 2 years, steady TOC
- Vinyl chloride reductase (VCR), DHC look strong

PZ20-73D (Colloidal Donor, CAC)

- TCE
- cDCE
- V(
- Ethene
- → Total CI-Ethenes
- TOC
- Near immediate CVOC mass flux elimination
- Mineralization of CVOCs (ethene formation) observed
- Vinyl chloride reductase (VCR), DHC look strong

PZ20-73D (Colloidal Donor, CAC)

- TCE
 cis DCE
 VC
 Ethene
 Total Molar Concentration
- Near immediate CVOC mass flux elimination
- Mineralization of CVOCs (ethene formation) observed
- Vinyl chloride reductase (VCR), DHC look strong

PZ20-73D (Colloidal Donor, CAC)

- Near immediate CVOC mass flux elimination
- Mineralization of CVOCs (ethene formation) observed
- Vinyl chloride reductase (VCR), DHC look strong

MetaArray data for both treatment areas

Sample Overview Continued

Table 2: Support Vector Machine (SVM) Reductive Dechlorination Classifications

MI Identifier	Sample Name	Predicted Class	SVM Model Accuracy ¹
020UA-1	SPMW-12S	High Reductive Dechlorination Potential	93%
020UA-2	PZ20-73S	High Reductive Dechlorination Potential	93%
020UA-3	PZ20-73D	High Reductive Dechlorination Potential	93%

Metabolomic data also suggest strong ERD potential

Conclusions

- Colloidal donor supports robust CVOC bioremediation
- Capable of long-term, sustained TOC release
- Action with or without CAC
- Can also be combined with ZVI
- TOC release profile consistent with lab results- expected activity for 10+ years

Thank You! Questions?

Paul Erickson, PhD

Director of Research & Development REGENESIS

perickson@regenesis.com

