

In-Situ Treatment for Hexavalent Chromium Using ISCR Enhanced Bioremediation in Saturated Clay Soils Results in No Further Action

Owen Miller Senior Design Specialist

Overview

- Site History and Background
- Treatment Evaluation
- Chromium Geochemistry
- Pilot Test Treatment
- Full-Scale Remedy
- Conclusions

Site History and Background

- Site Background
 - Midwestern Chrome
 Plating facility
- Historical Land Use
 - In operations for decades
 - Release of chromium [Cr(VI)] in shallow aquifer
 - Adjacent residential neighborhood

Site History and Background

Site Conceptual Model

- Widespread and radial plume
- Concs range widely:
 250 ppb to >300 ppm

Site Challenges

- Limited access due to existing infrastructure
- Low permeability (low K)
- Wide range of impacts

Site History and Background

- Site Hydrogeology
 - Glacial geology
 - Low K clays with interbedded sand
 - Shallow water table (~5 ft bgs)
 - Oxic geochemistry (150 to 200 mV ORP)
 - Impacts >20 ft. bgs

Treatment Evaluation

Treatment Needs

- Effective in low K and inside building
- Address range of concs
- Immediate and longterm treatment

Treatment Evaluation

- Pump and Treat? X
- Excavation? X
- In-Situ Metals Immobilization?✓
 - In-Situ treatment within existing infrastructure

Chromium Geochemistry

- In-Situ Metals Immobilization
 - Starts with fundamental geochemistry
- Chromium Geochemistry
 - Hexavalent CrO₄-2
 - Trivalent Cr(OH)
- Eh-pH Diagram
- Cr(IV) compounds are not stable under normal environmental conditions
- Once Cr(III) hydroxide is formed it remains stable

How to Treat Hex Chrome?

- How to Treat Hex Chrome?
 - Simple Treatment = Provide Electrons
 - In-Situ Chemical Reduction (ISCR) and Enhanced Anaerobic Bioremediation
 - Recall Eh-pH diagram once formed Cr (III) is stable precipitate under most conditions
- Treatment Chemistry Example

$$CrO_4^{-2} + 1.5 Fe^0 + 5H_3O^+ \rightarrow Cr(OH)_3 + 1.5 Fe^{+2} + 6H_2O$$

With excess iron, chromium can also form trivalent mixed iron chromium hydroxides $Fe_xCr_{1-x}(OH)_3$

Pilot Test Objectives

- Demonstrate aquifer can accept fluids via in-situ injections
- Determine optimal ISCR and Anaerobic Bio combination

Scope of Work

- Southwestern Pilot:
 - ISCR via viscous microscale
 ZVI slurry
- Northeastern Pilot:
 - Anaerobic bio using colloidal, emulsified electron donor
 - ISCR via Divalent Iron (DVI)

Southwestern Pilot Test

- As anticipated, ISCR effective for treatment
- Immediate reductions within 3 months
- Total hex chrome reduction of ~19 mg/L

 North 	eastern	Pil	ot 1	Test
---------------------------	---------	-----	------	-------------

- Anaerobic bioremediation effective for treatment
- Immediate reductions within 3 months
- Total hex chrome reduction of ~117 mg/L

				Dissolved Metals				
Monitoring Well Identification	Screen Interval	Remediaion Status	Sample Date	Chromium	Manganese	Iron		
Reporting Units				μg/L	μg/L	μg/L		
		Pre	4/23/18	18,900	<11.3	<155		
			7/16/18	172	948	22,400		
MW-19/19R		Post Pilot Test	8/20/18	97.6	1640	88,200		
1V1 VV -19/19 K		Post Pilot Test	1/21/2019*	16.1	608	12,200		

				Dissolved Metals				
Monitoring Well Identification	Screen Interval	Remediaion Status	Sample Date	Chromium	Manganese	Iron		
Reporting Units				μg/L	μg/L	μg/L		
		Pre	04/23/18	296,000	<11.3	<155		
		Post Pilot Test	07/16/18	161,000	99.1	929 J		
MW-20/20R		Post Pilot Test	08/20/18	174,000	73.1	156		
W -20/20K		Post Pilot Test	1/21/2019	179,000	37.1	<35.4		

Pilot Test Takeaways

- Anaerobic bioremediation treatment has greater removal than ZVI slurry (distribution)
- DVI and ZVI slurry are not optimal reductants
 - DVI (Ferrous Iron) was fully consumed during pilot test
 - ZVI Slurry less than ideal distribution

	Microscale ZVI	Oil Emulsion/Soluble Iron
Reactivity	Good	Good
Delivery	High pressures induce fractures	Low viscosity and low- pressure injection
Persistence	Good	Limited
Ease of Use	Requires high pressure pumps	Good

Full-Scale Remedy

- Full Scale Optimization
 - Leverage the same electron donor for full scale treatment
 - Excellent distribution within low K formation
 - Incorporate ZVI based ISCR
 - Boost treatment strength
 - Optimize ZVI Amendment
 - Use colloidal, sulfidated ZVI (S-MZVI)
 - Enhanced distribution, longevity and reactivity compared to slurry ZVI

Full-Scale Remedy

Full Scale Results

- 99% reduction achieved and maintained in all monitoring wells
- Treatment effective across entire concentration spectrum
- Treatment removal increased by ~150%

NFA Granted

- Regulators issued closure for hex chrome following full-scale remedy
 - PFAS investigation ongoing

				Dissolved Metals			Field Parameters					
Monitoring Well Identification	Screen Interval	Remediation Status	Sample Date	Chromium	Manganese	Iron	Temperature	Нq	Specific Conductance	Oxidation Reduction Potential	Turbidity	Dissolved Oxygen
	Reporting Units		μg/L	μg/L	μg/L	Celsius	S.U.	mS/cm	mV	NTU	mg/L	
NR 140 Enforcement Standard (ES)		100	300	300*								
NR 1	NR 140 Preventative Action Limit (PAL)		10	60	150*							
		Pre	06/28/17	265,000	NA	NA	NA	NA	NA	NA	NA	NA
			08/31/17	331,000	NA	NA	NA	NA	NA	NA	NA	NA
			04/23/18	296,000	<11.3	<155	15.73	7.21	2.70	282	50.4	NA
		Post Pilot Test	07/16/18	161,000	99.1	929 J	20.33	7.10	2.73	78	47.8	8.76
MW-20/20R			08/20/18	174,000	73.1	156	19.93	7.54	2.52	103	0.0	10.05
			01/21/19	179,000	37.1	<35.4	17.09	8.20	2.55	126	1.9	5.02
	5.1 - 15.1	1 - 15.1	04/10/20	7.0	114	9,250	17.90	7.48	1.41	-114	149	1.47
			06/30/20	10.9	166	23,000	20.62	6.98	2.25	-102.7	934	1.01
			09/29/20	16.7	178	17,800	20.36	7.09	2.15	-78.4	57.8	0.69
DUP-1	Post Full-S	Post Full-Scale	09/29/20	22.8	179	17,200	NA	NA	NA	NA	NA	NA
		12/29/20	<3.9	160	1,950	15.24	7.02	2.41	-81.9	235.4	4.09	
MW-20R	MW-20R		03/17/21	145	328	23,100	16.41	7.14	2.17	- 51.2	59.96	2.58
		07/07/21	4.9 J	130	10,700	20.68	7.14	2.10	-80.6	36.16	4.60	

Conclusions

- In-Situ Metals Immobilization for Cr(VI) is highly effective
 - Offers immediate and long-term treatment without site disruption
- Combining ISCR and Anaerobic Bioremediation is recommended
 - Leverage both treatment technologies when possible
- ISCR selection is key for optimization
 - ZVI based ISCR is recommended greater strength and quicker transformation to trivalent chromium
 - Mobility, reactivity, longevity and overall treatment is enhanced with colloidal iron

Questions?

Owen Miller
Senior Design Specialist
omiller@regenesis.com
630-277-0855

