

Novel organism deployed for *In situ* Bioremediation of 1,4-Dioxane in Groundwater

Presented by - Areen Banerjee

Transformative biology for 1,4-Dioxane degradation

1,4-Dioxane: An emerging contaminant found in more than 10% of US drinking water

- A chemical that was widely used for industrial chemical processes
- Impacting over 90 million people in the US; >1,900 utilities
- EPA Dioxane Health Reference Level (HRL): 0.35 to 35 μg/L
- Like PFAS, it is slow to degrade, becoming a persistent environmental problem

Biodegradation of 1,4-dioxane

Challenges with Cometabolism (and Chemical Oxidation)

• In situ mixing

Potentially hazardous substrates

• Rapid substrate utilization

• Oxygen depletion

Cost

ALL22_0001

- Gram positive aerobic bacterium
- Naturally occurring and non-sporulating strain
- Easy to cultivate and grows well in nutrient rich medium
- Doesn't need presence of 1,4-Dioxane to maintain degradation phenotype (no activation required)
- Previously shown to degrade 1,4-Dioxane metabolically under lab conditions
- No previously known studies done to show ability of microbe to degrade 1,4-Dioxane in groundwater

State Regulations for 1,4-D

• Half of US states have a groundwater cleanup standard for 1,4-dioxane

Laboratory experiments

Lab degradation of 1,4-Dioxane

1,4-Dioxane degradation at low concentrations

1,4-Dioxane degradation in groundwater (Lab conditions)

72h

0.0

0h

First In Situ Application of ALL22_0001

Location: Southern California

Inoculation Date: November 2022

Client: Confidential Site

Site Type: Industrial, Groundwater Plume

Application: In Situ Groundwater Pilot Study

Existing conditions

- CVOC plume due to industrial contamination post-ISCO
- Significant remaining 1,4-dioxane, not originally targeted
- Two plumes at different depths in separate confined sandy transmissive aquifers
 - Well A: shallow water bearing zone (17-32ft bgs);
 18,000 ppb 1,4-dioxane
 - Well B: deep water bearing zone (49-59ft bgs); 670 ppb 1,4-dioxane

Experimental conditions

- First in-situ application of ALL22_0001
- Bioaugmentation with live culture and nutrient mixture of two wells
- Periodic down-well air sparging due to anaerobic conditions in the aquifer
- Five-month monitoring period with no additional injection of organisms or nutrients

allennia.

Results

Well-A

- Up to 97% reduction of 1,4-dioxane (18,000-440 ug/L in 5 months)
- Negligible rebound observed in the well
- 33% reduction after just one week

Well-B

- **Up to 98% reduction** of 1,4-dioxane (670-12 μg/L in 2.5 months)
- 63% pilot study endpoint reduction
- 49% reduction after just one week

qPCR analysis for microbial tracking

allonnia. - California - Calif

1,4-Dioxane degradation in relation to cell number

- Cell concentration in the range of 500 cells/ml is enough to sustain in-situ degradation.
- Culture can sustain post-inoculation in-situ for at least 5 months without supplementing carbon/nutrients/substantial oxygen

Summary

First in situ demonstration

of ALL22_0001 to degrade 1,4-Dioxane

>95% reduction

in 1,4-Dioxane concentration observed in both wells

Negligible rebound

in Well 1 1,4-Dioxane concentrations 63% reduction

in Well 2
1,4-Dioxane
concentrations at the
end of trial

Confidential 18

Acknowledgement

Stantec Consulting Services Inc.

• Angus McGrath

Allonnia LLC

- Zach Pierce
- Stephen Koenigsberg
- Dayal Saran
- Kent Sorenson

Eleszto Genetika

Lorand Szabo

Microbial Insights

Thank you

W W W . A L L O N N I A . C O M