PFAS-Laden Spent Media Destruction Using Supercritical Water Oxidation Technology

B6. Comparing Ex Situ Destruction Technologies

Dora Chiang, Ph.D., P.E. | dora.chiang@wsp.com | Atlanta, Georgia

May 10, 2023

Spent PFAS-Laden Media Destruction Study Plan

- Develop a new approach to effectively, safely and economically destroy PFASladen spent media on site without off-site disposal or incineration
- Prove the concept that supercritical water oxidation (SCWO) technology is feasible
- Identify knowledge/data gaps and prepare for scale-up applications
- Performance evaluation using Draft EPA Method 1633 for 40 PFAS

Technology Background

>374 °C
PFAS +
$$O_2$$
 (air) \Longrightarrow CO_2 + F^- + CaF_2 + heat + H_2O ~240 bars

- Water >374°C and pressure of 221.1 bar is considered "supercritical"
- Under these conditions, certain chemical oxidation processes are accelerated
- Treatability studies successfully destroyed PFAS in AFFF and other concentrates
- Pilot and full-scale system available
 - 374Water AirSCWOTM
 - General Atomics iSCWOTM
 - Battelle AnnihilatorTM

SCWO Feedstock Sample Collection

- **Spent GAC** sample (FT-02) from a full-scale groundwater treatment system
- Spent AIX sample (Mission Street) from a full-scale groundwater treatment system
- Spent AIX sample (Miramar) from a mobile wastewater treatment system
- Estimated PFAS mass loading on the spent media based on the PFAS treatment system operation and monitoring data
- SCWO treatment using 374Water AirSCWO-1 system

FT-02 Spent GAC Sample Full-scale PFAS treatment system operated since April 2015

SCWO Treatment Results

FT-02 Spent GAC	Feedstock (Measured)	Effluent
	ng/kg	ng/L, ppt
PFBA	15,035.78	42.6
PFPEA	25,196.78	25.7
PFHXA	33,506.26	28.7
PFHPA	3,364.94	1.14
PFOA	13,059.03	1.1
PFNA	288.82	ND
PFBS	689.62	41.3
PFPES	514.4	5.09
PFHXS	17,737.03	50.9
PFHPS	928.44	4.62
PFOS	83,935.60	243
6:2 FTS	12,611.81	98.7
8:2 FTS	4,321.11	ND
PFOSA	3,164.58	5.07
Total PFCA	90,451.61	99.24
Total PFSA	103,805.09	344.91
Precursors	20,097.50	103.77
Short chain (C<6)	41,436.58	114.69
Total	214,354.20	547.92

Mission Street Spent AIX Sample

- AIX resin treatment system has been operated since December to treat extracted groundwater for PFOS and PFOA
- The spent AIX is drained and disposed of
- The spent AIX sample for SCWO study was collected from the lead vessel after 264 days of lead vessel operation (i.e., treatment of 63.4 M gallons of influent groundwater)

SCWO Treatment Results

Mission Street Spent AIX	Feedstock	Effluent
	ng/kg	ng/L, ppt
PFBA	2,645.65	ND
PFPeA	17,841.45	ND
PFHxA	87,831.90	1.04
PFHpA	31,155.68	ND
PFOA	120,057.31	ND
PFNA	686.53	ND
PFBS	27,153.77	0.47
PFPeS	36,743.08	0.5
PFHxS	555,873.93	6.45
PFHpS	50,687.68	0.71
PFOS	421,776.50	62.7
6:2 FTS	33,256.92	1.39
PFOSA*	182.426	3.74
Total PFCA	260,218.52	1.04
Total PFSA	1,092,234.96	70.83
Precursors	33,256.92	5.13
Short chain (C<6)	84,383.95	0.97
Total	1,385,892.83	77

Miramar Spent AIX Sample

- Total PFAS influent concentrations exceeding **8 mg/L**
- Treatment train: organoclay (pretreatment), GAC (primary treatment), and AIX (polishing treatment).
- COCs: PFAS, metals, TPH, VOC
- Two independent treatment trains of the same configuration
- Maximum operational flow rate of 10 gpm, and total EBCT of 50 minutes
- AIX treated approximately 0.36 M gallons of PFAS-contaminated wastewater

SCWO Treatment Results

Miramar Spent AIX	Feedstock	Effluent
	ng/kg	ng/L, ppt
PFBA	85,907.81	7.82
PFPEA	102,163.69	4.74
PFHXA	33,979.30	7.08
PFHPA	1,641.58	1.01
PFOA	7,515.52	1.82
PFBS	41,279.40	9.55
PFPES	4,724.37	10.8
PFHXS	33,659.45	198
PFHPS	8,056.44	39.5
PFOS	491,251.18	501
PFNS	180.53	ND
6:2 FTS	77,441.20	ND
8:2 FTS	3,875.82	ND
PFOSA	3,492.94	14.7
Total PFCA	231,207.90	22.47
Total PFSA	579,151.37	758.85
Precursors	84,809.96	14.70
Short chain (C<6)	234,075.27	32.91
Total	895,169.23	796.02

Extractable PFAS from Spent Media using Draft Method 1633

- Low PFAS recovery from spent GAC and AIX
- PFAS elimination %, DRE and fluorine mass balance are not reliable

Mass loading	Calculated in spent GAC	EPA 1633 measured
PFOA, ng/kg	11,045,123	13,059
PFOS, ng/kg	59,622,929	83,936
Mass loading	Calculated in spent	EPA 1633

Mass loading	Calculated in spent AIX	EPA 1633 measured
PFOA, ng/kg	1,658,988,799	120,057
PFOS, ng/kg	13,863,759,680	421,776

Summary

• The study proves the concept the SCWO can decompose spent PFAS-Y laden GAC and AIX

- Rate-based PFAS elimination effectiveness
 - Spent AIX > spent GAC
 - PFCAs > PFSAs
 - Long-chain PFAS > short chain PFAS
- Measured PFAS concentrations in 60% feedstock may be underestimated 50%

■ Total ◆ Total PFAS , ng/kg

Next Step

- Advancing understanding of SCWO for Solid Waste Treatment
 - PFAS destruction
 - F mass balance
 - Factors governing PFAS destruction
 - Calorific value
 - SCWO reaction time
 - Sorbent media structures
 - Energy consumption
- On-site demonstration using AirSCWO-6
- Life cycle assessment
- Develop robust performance monitoring program

Two Pilot- Scale
Demonstrations
Using AirSCWO-6

Acknowledgement

Marc Deshusses, Ph.D.
Professor, Dept. of Civil & Environmental Engineering
Co-founder and Head of Technology 374Water

374WATER°

WSP Team
Justin Gal
Kevin Olness
Nathan Hagelin

SGS/AXYS Laboratory

Thank You

Dora Chiang, Ph.D., P.E. | dora.chiang@wsp.com | Atlanta, Georgia

