

Mechanochemical Destruction as a Scalable Treatment Technology for PFAS

Dr Kapish Gobindlal, Prof Jonathan Sperry, & Marcus Glucina

May 2023

International Symposium on Bioremediation and Sustainable Environmental Technologies

Outline

- i. Technology Overview
- ii. Underlying Science
- **III.** PFAS Destruction Trials
 - Ideal Matrices
 - AFFF Concentrate
 - Impacted Soil
- v. Scale-Up Potential
- vi. Next Steps

Technology Capabilities

Mechanochemical Destruction (MCD)

Hazardous Waste Treatment

- Mechanochemistry based solution for the treatment of various toxic waste streams.
- Green approach to contaminated land and chemical stockpiles.
- Demonstrated at various scales. Scale-up required for PFAS issues.
- POPs, PFAS, PAHs, asbestos.

The Science

Mechanochemistry

- Immense mechanical forces drive physical and chemical transformations.
- Ball bearings in the MCD reactors collide at incredibly fast speeds.
- Particles are subject to intense destruction conditions at the points of collision.
- Important to understand the fundamental science and technology scale-up.

Experimental Strategy

Explore reaction initiation and propagation induced by ball milling.

Determine destruction efficiencies, evaluate mechanisms, explore kinetics, and fluorine fate.

Focused Experimental Design

Meaningfully Inform Scale-Up

Experimental Design

Generation of Reactive Sites Destruction of Pure PFAS Standards Destruction of PFAS in AFFF Concentrates Destruction of PFAS in Real-World Contaminated Soil SCALE-UP

Analytical Suite

Liquid Chromatography Tandem Mass Spectrometry

Combustion Ion Chromatography

Fourier Transform Infrared

High Resolution Mass Spectrometry

Solid-State Nuclear Magnetic Resonance

Liquid Nuclear Magnetic Resonance

Electron Paramagnetic Resonance

Powder X-Ray Diffraction

Scanning Electron Microscopy

X-Ray Photoelectron Spectroscopy

BET Surface Area Analysis

Reactive Sites

PFAS + Reactive Surfaces → Intermediates → Mineralized By-Products

MCD of PFAS: Ideal Matrices

Procedure PFAS Standard(s) ~0.05 g Quartz Sand ~5.00 g

Degradation Kinetics

Degradation Mechanism

Fluorine Fate

Solid-State Nuclear Magnetic Resonance

Direct Polarisation

Cross Polarisation

Overall Reaction

Real-World Challenges: AFFF Concentrates

Obsolete foam concentrates are a major liability issue.

5%-10% fluorosurfactants in foams.

Ball milling of AFFFs on quartz sand bed proved highly effective.

6:2 Fluorotelomermercaptoalkylamido sulfonate

6:2 Fluorotelomermercaptoalkylamido sulfonate sulfoxide

6:2 Fluorotelomer sulfonate

Real-World Challenges: Contaminated Soil

Authentic sample derived from a Defence Force site.

Incredibly complex PFAS profile due to decades of foam use.

Ball milling of PFAS-impacted soil leads to an inert end-product.

Theoretical EE/O of 45-180 kWh/m³ (destruction).

Technology Scale-Up

The primary objective of scale-up strategy is to de-risk the implementation of the MCD technology at full-scale.

5 g batch.

Efficacy.

Fundamental science.

Pilot

100s kgs semi-continuous.

Scalability.

Operational conditions.

Full-Scale

Tonnes per hour continuous.

QA/QC.

Plant maintenance.

MCD Reactor Design

Full-scale = tonnes per hour

Technology Fundamentals

Horizontal stirred ball mill design is a proven high efficiency mechanochemical system.

Engineered to destroy organic pollutants (e.g., PFAS, POPs) in solid matrices.

Focused on sustainability and providing the environmental sector with a greener solution for destruction.

Technology Adaptability

www.edl-europe.com www.edl-

asia.com