More Data, Less LNAPL: Insights from Over 15 Years of Research on Natural Source Zone Depletion (NSZD)

Battelle Bioremediation Conference

9 May 2023

Kenneth L. Walker, Jr., PE, PG Poonam Kulkarni, PE Charles Newell, PhD, PE Kayvan Karimi Askarani, PhD Beatrice Yue Li, PhD, PE Tom McHugh, PhD, DABT

ENVIRONMEN

What is NSZD?

Natural Source Zone Depletion

- Natural Source Zone Depletion (NSZD) is a combination of processes that reduce mass of LNAPL in the subsurface via dissolution, volatilization, and biodegradation (ITRC, 2009)
- How are these Rates Used?
 - Confirm that LNAPL is biodegrading and quantify the rate
 - More accurate estimation of remediation timeframe by NSZD
 - Evaluate effectiveness of active remediation systems

Measuring NSZD: Four Methods

Goals, Methods, and Dataset

Key Study Questions

- Across the range of sites, what are the range of measured site-average NSZD rates?
- Do site-average NSZD rates change with fuel type?
- How comparable are NSZD rate measurement methods when employed at the same site, and is there method bias across sites?
- How do site-average NSZD rates vary over time (seasonal and annual)?

Dataset Overview

- Compilation of published literature (individual site NSZD assessments)
- LNAPL-impacted sites across: US, Australia, Canada, Europe
- > Data Collected:
 - Site location
 - LNAPL fuel type
 - NSZD rates and measurement method
 - # of measurement locations, and sampling frequency
- Calculated: Site-average NSZD rate

Final Dataset: 40 Sites

Dataset Method and Measurement Frequency

of Locations per Site: Gradient Method: 1-6 DCC: 2-150 Carbon Traps: 2-17 Thermal Monitoring: 1-21

Total Measurements:

Gradient Method: 2-32 DCC: 4-332 Carbon Traps: 2-26 Thermal Monitoring: 2-4,160

<u># of Sites:</u>
Gradient Method: 11
DCC: 16
Carbon Traps: 22
Thermal Monitoring: 18

Varying Method Sampling Frequency and Number of Locations per Site

Across the Range of Sites, What are the Range of Measured Site-Average NSZD Rates?

	Site-Average NSZD Rate, All Methods (gal/acre/yr)
Minimum	70
10th Percentile	170
25th Percentile	300
Median	1,020
75th Percentile	2,720
90th Percentile	5,490
Maximum	16,250

Key Points:

- All sites studied had measurable NSZD rates, with 90% of sites >170 gal/ac/yr
- Median Site-Average NSZD Rate of **1,020 gal/ac/yr**

Do Site-Average NSZD Rates Vary with Fuel Type?

Key Point: Fuel type is not a primary driver of NSZD rates, indicating other site-specific factors have more of an impact

25-75th

Percentile

How comparable are NSZD rate measurement methods when employed at the same site?

- Subset of 13 sites where more than one method was used
 - Site-Average NSZD rates known to vary with measurement method
- Ratio of Max/Min rates per combination
 (e.g., Ratio of Thermal vs. Traps; Gradient vs. LI-COR)
- Total Combinations: 31

GS

How comparable are NSZD rate measurement methods when employed at the same site?

	Ratio of Max / Min							
		Gradient vs. LICOR	Traps vs. LICOR	Thermal vs. LICOR	Traps vs. Gradient	Gradient vs. Thermal		
Median Ratio per Pair	1.5	1.8	2.1	2.6	2.6	5.7		
Overall Median Ratio = 2.1		Higher Variability						

Key Points:

- Median ratios vary with paired methods
- Overall Median Ratio = 2.1 (e.g., at a typical site, NSZD rates vary by a factor of 2 with different measurement methods)

Is there Measurement Method Bias? Distribution Across All Sites

Using Kruskal Wallis Test, no statistically significant difference in rates for any method (p>0.05)

14

Is there Measurement Method Bias? Paired Methods

How do site-average NSZD rates vary over time (seasonal)?

- Warmer temperatures enhance biodegradation
 - Application in wastewater treatment (anaerobic digesters)
 - Microcosm studies (Zeman et al., 2014)
 - Big data evaluation (>2,000 sites) of source attenuation rates in groundwater (Kulkarni et al., 2017)
- Natural seasonal subsurface temperate fluctuations
- Arrhenius Equation: $Q_{10} = (R_2/R_1)^{[10/(T2-T1)]}$

Attenuation Rates at Hydrocarbon Sites by Poonam R. Kulkarni, David C. Kina, Thomas E. McHuah, David T. Adamson, and Charles J. Newel 30 - 5 ft bgs Fall Subsurface Temperature (°C) 10 ft bgs 25 --- 20 ft bgs 20 — 30 ft bgs 10 5

Monitoring&Remediation

Key Point: Typical Q_{10} value = 2.0 (doubling of rate with 10 °C increase in temperature)

How do site-average NSZD rates vary over time (seasonal)?

- Highest rates in Fall, when subsurface temperatures are highest (2 sites)
- Little or no seasonal variation due to variability (2 sites)
- Q₁₀ values using subsurface
 temperatures and NSZD rates
 measured in Fall vs. Spring

GS

ENVIRONMENTAL

How do site-average NSZD rates vary over time (seasonal)?

Key Points:

- Some sites show clear seasonal differences in NSZD rates
- *Median* Q₁₀ = 2.2
- Potential for doubling biodegradation rates with a 10 °C increase in subsurface temperature

How do site-average NSZD rates vary over time (Annual)?

- Subset of 5 sites
 - Multiple years
 - > At least 2 seasons per year
- Annual site-average NSZD rates vary 1.1 - 4.9X across years
- Temperature-based methods show lower annual variability (1.4 - 1.9X) compared to other methods (4.1 – 4.9X)

	Site-average NSZD Rate (gal/acre/year)							
Method	Year 1	Year 2	Year 3	Year 4	Max/ Min			
DCC	1,150	810	240		4.9			
Thermal	300	240	210		1.4			
Carbon Trap	1,620	4,000	6,600		4.1			
Thermal	160	140			1.2			
DCC	2,030	2,740	560	610	4.9			

Conclusions

Conclusions

- Site-Average NSZD rates range from 70-16,250 gal/acre/year, with a median of 1,020 gal/acre/year
- > Fuel type not a primary factor controlling NSZD rates
- Different measurement methods typically within a factor of 2 of each other, with no clear bias.
 - > Using any particular method is "good enough" in most cases.
- Increasing mean annual soil temperatures could potentially increase the biodegradation rate at some sites

- At majority of sites, a reasonable estimate of **long-term NSZD rate** (within factor of 2-3) can be achieved by:
 - > Single measurement method
 - Method employed at 3-7 locations per site
 - Measurements taken at least two semi-annual (fall and spring) or four seasonal measurements per location

Acknowledgements

- Naval Facilities Engineering and Expeditionary Warfare Center (NAVFAC EXWC)
- > Environmental Security Technology Certification Program (ESTCP) ER19-5091
- Michael Singletary NAVFAC
- > Stephen Rosansky Battelle
- Jovan Popovic Noblis

Questions

Kenneth ("Neth") L. Walker, Jr., PE, PG SENIOR GEOLOGIST AND ENGINEER klwalker@gsi-net.com

713-522-6300 (office)

