

Latest Developments in Total Petroleum Hydrocarbon (TPH) Risk-Based Strategies

Laura Trozzolo, TRC

P: 303.908.2158 | E: ltrozzolo@trccompanies.com

6th Battelle Bioremediation Symposium May 9, 2023

TPH Risk-Based Strategies - Overview > TRC

Understanding Biodegradation is the KEY

Is **biodegradation** occurring at my site?

Adding Biodegradation Lines of Evidence (LOE) into Risk Assessment Process:

- **Data Analysis**
- Toxicity assessment
- Exposure / Conceptual Site Model (CSM)
- Characterizing risk

Biodegradation LOE leads to understanding:

- Nature & extent of TPH exposure risks
- Nature & extent of **biodegradation**/presence of polar metabolites
- Realistic Risk Management options on road to site closure

Biodegradation 101

Hydrocarbons (HCs) are <u>susceptible to biodegradation</u>, but some degrade faster than others

Characteristics

- Stepwise process leads to new metabolites that can be further degraded
- Rapid under aerobic conditions*
- Slower under anaerobic conditions and more prone to buildup c metabolites
- Non-aqueous phase liquid (NAPL) takes longer to degrade than vapor or dissolved phases

Highly Branched Alkanes Remain After Biodegradation

ITRC TPHRisk-1: Figure A5-3

^{*}laboratory conditions suggested may not reflect actual field conditions

TPH Fate - Production of Petroleum (Polar) > TRC **Metabolites**

Hexane Polar Metabolites

- 2-Hexanone
- Hexanoic acid

Chemical	Formula	ВР	Кос	Solubility	
Ciferincai	Torritala	(°C)	(L/kg)	(μg/L)	
n-Hexane	C_6H_{14}	69	131.5	9.5E+03	
2-Hexanone	$C_6H_{12}O_1$	128	14.98	7.7E+06	
Hexanoic Acid	$C_6H_{12}O_2$	205	40.63	5.8E+06	

Oxygen = polar

Source: USEPA EPI Suite™

More soluble / mobile than hexane

n-Hexane

2-Hexanone

Hexanoic acid

TPH Fate – Detection of Petroleum Metabolites

(*Zemo et al. 2016*)

ITRC TPHRisk-1: Figure A5-5 (data from CA site)

TPH Fate in Groundwater

Groundwater Flow Direction Increasing Distance to the Left

Information on relative HC/ metabolite concentrations (Zemo et al. 2016)

Natural attenuation of fuels & chlorinated solvents in the subsurface

(Wiedemeier et al. 1999)

Data Analysis: Selecting Appropriate TPH Lab Methods

TPH is Defined by the Analytical Method

- BULK ANALYSIS: Extent of total extractable organics
 - **Use:** preliminary site assessment
 - Data: C6-C12 GRO, >C12-C28 DRO, >C28-C35 ORO
 - Methods: 8015 and 8260, TX1005, KS LRH/MRH/HRH

- FRACTIONATED ANALYSIS: Refinement of TPH into aliphatics and aromatics
 - Use: human health/ecological risk assessment, F&T
 - Data: aliphatics & aromatics separated, analyzed as shorter fraction ranges (4 aliphatic ranges & 3 aromatic ranges for C6-C12)
 - Methods: TX1006, MADEP VPH/EPH, WA Dep Ecology
- SILICA GEL CLEANUP: Fate of TPH
 - **Use:** Biodegradation LOE
 - Methods: EPA Method 3630C with 8015, 8260; EPA Method 3630C with TX1005 (optional)

TPH Fate – Petroleum Metabolite Case Study

Biodegradation is occurring

 based on split soil sample (bulk TPH analytical) results @ weathered diesel release site

ITRC TPHRisk-1: Figure A5-5 (data from CA site)

TPH Fractionation

- Fractionation relies on the use of silica gel to separate the sample into aliphatic & aromatic classes*
- Fractions are injected into a GC for carbon range separation
- Pros/Cons of TPH Fractionation
 - More expensive than bulk TPH
 - Raises reporting limits
 - Non-hydrocarbons/metabolites removed from analysis
 - Toxicity values assigned to fractions (e.g., USEPA RSL Table)

^{*} Class separation in the volatile range does not rely on silica gel

Fractionated Analysis vs. USEPA Toxicity Values

		Α	liphatic	Aromatic					
Carbon Chain Length	8 7 6	9 11 12 13 13 14 15 16 17	20 21 22 23 24 25 26 27 28 30 31 31 32 33 33	6 7 7 10 11 12 13 15	14 18 19 20 21 24 25 26 26 27 28 29 31 31 33	35			
USEPA Toxicity Category	Aliphatic Low	Aliphatic Medium	Aliphatic High	Aromatic Low*	Aromatic High				

^{*}EPA removed in November 2022 RSL Table

Toxicity and Chemical-specific Information								Contaminant					
SFO	k		k	RfD_o	k		k	v					
(mg/kg-	е	IUR	е	(mg/kg-	е	RfC _i	е	0				C _{sat}	
day) ⁻¹	У	$(ug/m^3)^{-1}$	у	day)	у	(mg/m ³)	У	T	mutagen	GIABS	ABS_d	(mg/kg)	Analyte
				3.0E+00	Р			٧		1		3.4E-01	Total Petroleum Hydrocarbons (Aliphatic High)
				5.0E-03	Р	4.0E-01	Р	٧		1		5.2E+01	Total Petroleum Hydrocarbons (Aliphatic Low)
				1.0E-02	Χ	1.0E-01	Р	٧		1		6.9E+00	Total Petroleum Hydrocarbons (Aliphatic Medium)
				3.0E-04	Р	2.0E-06	Р		М	1	0.13		Total Petroleum Hydrocarbons (Aromatic High)
				1.0E-02	Р	6.0E-02	Р	V		1		2.3E+02	Total Petroleum Hydrocarbons (Aromatic Medium)

Toxicity of Metabolites

- Challenge assessing metabolite risks
 - Limited toxicity information for individual metabolites and mixtures
- Petroleum metabolites less "toxic" than undegraded hydrocarbons, in general
- Options for evaluating metabolite toxicity
 - Exclude metabolites from evaluation
 - Use metabolite toxicity from Rogers et al. (2002) study
 - Adopt toxicity ranking model from Zemo et al. (2013, 2016)
 - Assume bulk hydrocarbon toxicity as surrogate for metabolites (HIDOH, 2017) and (SFB-RWQCB, 2016)

TPH Exposure / Conceptual Site Model (CSM)

Fixed Gas vs Pet HC Vertical Profile

Figure 1. Typical vertical concentration profile in the unsaturated zone for PHCs, carbon dioxide, and oxygen (USEPA, 2015)

PVI Vertical Screening Distances

- <u>18 feet</u> LNAPL sources (petroleum industrial sites) (ITRC)
- 15 feet LNAPL sources (petroleum UST/AST sites) (EPA & ITRC)
- <u>6 feet</u> dissolved-phase sources (EPA)
- <u>5 feet</u> dissolved-phase sources (ITRC)

Summary: Assessing Human Health Risk from TPH

- TPH is a complex mixture
- Unique fate and transport properties of TPH (biodegradation and metabolite production) affect how risk should be assessed
- Varying types of TPH data lend themselves to a tiered assessment approach (bulk vs fractionated)
- Understanding TPH analytical data, CSM, and regulatory framework is critical in Realistic Risk Management options on road to site closure

Thank You!

References

- HIDOH. 2017. Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater Tropical Pacific Edition (Fall 2017 and Updates).
- Petroleum Vapor Intrusion (PVI) Tech Reg, *PVI-1: Fundamentals of Screening, Investigation, and Management* Interstate Technology & Regulatory Council. Washington, D.C. January 2015.
- Rogers, V.V., M. Wickstrom, K. Liber, and M.D. MacKinnon. 2002. Acute and Subchronic Mammalian Toxicity of Naphthenic Acids from Oil Sands Tailings. Toxicological Sciences, 66, pp. 347-355.
- SFB-RWQCB, 2016. Petroleum Metabolites, Literature Review and Assessment Framework, Technical Resource Document, San Francisco Bay Regional Water Quality Control Board, June.
- Shih, T., Y. Rong, T. Harmon, and M. Suffet, 2004. Evaluation of the impact of fuel hydrocarbons and oxygenates on groundwater resources. Environmental Science & Technology. Vol. 38, No. 1: 42-48.
- Total Petroleum Hydrocarbon (TPH) Risk Evaluation Tech Reg, **TPHRisk-1: TPH Risk Evaluation at Petroleum- Contaminated Sites** Interstate Technology & Regulatory Council. Washington, D.C. November 2018.
- USEPA, 2015. Technical Guide For Addressing Petroleum Vapor Intrusion At Leaking Underground Storage Tank Sites, Office of Underground Storage Tanks, Washington, D.C. EPA 510-R-15-001. June.
- Wiedemeier, T. H., H. S. Rifai, C. J. Newell, and J. T. Wilson. 1999. *Natural Attenuation of Fuels and Chlorinated Solvents in the Subsurface*: John Wiley & Sons.
- Zemo, D.A., K.T. O'Reilly, R.E. Mohler, A.K. Tiwary, R.I. Magaw, and K. A. Synowiec. 2013. Nature and Estimated Human Toxicity of Polar Metabolite Mixtures in Groundwater Quantified as TPHd/DRO at Biodegrading Fuel Release Sites. Groundwater Monitoring & Remediation, Vol. 33, pp. 44-56.
- Zemo, D. A. 2016. White Paper: Analytical Methods for Total Petroleum Hydrocarbons (TPH). Washington, D.C.: Prepared for American Petroleum Institute (API).