

Comparison of Bioremediation of Biosparge Systems from Iwo Sites

Anjali Lothe (anjali.lothe@aecom.com) and Assaf Rees (assaf.rees@aecom.com) AECOM, Long Beach, CA, USA

Delivering a better world

Battelle - International Symposium on Bioremediation and Sustainable Environmental Technologies

May 8-11, 2023 | Austin, Texas

 Review the complexities of site conditions at two active industrial petroleum sites in Southern California.

 Compare LNAPL thickness, Benzene concentration and microbial community responses to biosparging parameters.

- Analyze if achieving uniform responses across the site depends on remedy delivery.

Site 1

LEGEND

- BIOSPARGING WELL
- → MONITORING WELL

- System was started on July 14, 2020.

- Group 1 B
 - 2.6 to 26 scfm.
 - 1 to 25 psi
- Group 2 B
 - 1.6 to 30 scfm.
 - 4 to 26 psi

Site 2

Site 2: Group 1 Branch Flow Rates and Pressure

- Group 1 of the system was started on September 21, 2021.
 - 33 to 58 scfm
 - 24 to 28 psi

- Group 2 of the system was started on September 28, 2021.

- 7 to 22 scfm.
- 21 to 55 psi

Group 3 of the system was started on September 21, 2021.

- 31 to 58 scfm.
- 17 to 38 psi

Summary of Site Overview

Site	Top of Screen	Bottom of Screen	Number of wells	Average Flow Rate Per well (scfm)	Average Pressure Per well (psi)
Site 1- Group 1B	35.5	39	11	1	1
Site 1- Group 2B	36	39	11	1	1
Site 2- Group 1B	73	86	10	4	2
Site 2- Group 2B	74	89	13	3	2
Site 2- Group 3B	62	80	6	2	5

LNAPL Thickness

Site 1

Site 2

Microbial Trends

Benzene Trends

Dissolved Oxygen vs Flow Rates

Dissolved Oxygen vs Distance from nearest Sparge Well

Dissolved Oxygen vs Porosity

Site 2: Cross Section

GRAIN SIZE LOG CLAY CLAY WITH SAND SILT SILTY SAND (FINE SAND WITH 40% FINES) SILT SAND (FINE SAND WITH 10-20% FINES) FINE SAND SILTY SAND (MEDIUM SAND WITH 10-20% FINES) MEDIUM SAND COARSE SAND

Site 2: Cross Section

GRAIN SIZE LOG

CLAY

CLAY WITH SAND

SILT

SILTY SAND (FINE SAND WITH 40% FINES)

SILT SAND (FINE SAND WITH 10-20% FINES)

FINE SAND

SILTY SAND (MEDIUM SAND WITH 10-20% FINES)

MEDIUM SAND

COARSE SAND

- Dissolved Oxygen concentrations correlate with
 - the magnitude of flow rates
 - The distance of the nearest sparge well
 - and the permeability of the formation.
- To achieve uniform distribution and remediation at any site the effective zone of sparging influence can be optimized by studying the three key factors that affect the DO concentrations.

Thank You!

Anjali Lothe (<u>anjali.lothe@aecom.com</u>) and Assaf Rees (<u>assaf.rees@aecom.com</u>) (AECOM, Long Beach, CA, USA)

