SIXTH INTERNATIONAL SYMPOSIUM ON BIOREMEDIATION AND SUSTAINABLE ENVIRONMENTAL TECHNOLOGIES MAY 8–11, 2023 | AUSTIN, TEXAS

Jo Pavlowsky, PE (APTIM, Hill AFB, UT)

Ben Porter (APTIM, Canton, MA)

Jack Briegel (APTIM, Knoxville, TN)

Peifen Tamashiro, PG (AFCEC, Hill AFB, UT)

BACKGROUND: HILL AFB SUPERFUND SITE

- ► Active 6,700-acre Air Force Base (AFB)
 - Army depot since 1920; heavy industrial ops since 1957
- Historical industrial operations generated chlorinated and non-chlorinated solvents, fuels and other petroleum products, acids, corrosives, and metals
- Prior to 1980, chemicals and wastes disposed in pits and landfills, forming numerous hazardous waste sites
- Added to National Priorities List in 1987
- 18 operable units (and counting)

BACKGROUND: OPERABLE UNIT 2

- Large quantities of solvents disposed to chemical pits (unlined trenches) in source area from 1960s to 1970s
- ► Estimated 50,000 gallons of spent chlorinated solvents dumped, forming existing dense non-aqueous phase liquid (DNAPL) source area (TCE [primarily], PCE, and 1,1,1-TCA)
- Downward movement of DNAPL restricted by buried clay paleochannel ("trough")
- ► Groundwater flow to northeast; TCE plume migrating downhill and off-Base to residential areas ("Non-Source Area")

OU2 TCE PLUME (2022)

BACKGROUND: OPERABLE UNIT 2

- ► Remedial Investigation (RI) in early 1990s
 - ▶ ROD signed in 1996
- Source Area Remedial Systems
 - Source Recovery System free-product and groundwater recovery well-field (1993)
 - 44,500 gal DNAPL removed to date
 - Containment wall: in-situ bentonite slurry and soil mixture, 1500 feet in length and 60-90 feet bgs (1996)
 - Upgradient Groundwater Extraction Trench (1996)
 - Air Stripper Treatment Plant (1996)

OU2 REMEDIAL SYSTEMS (2019 TCE PLUME)

CONCEPTUAL SITE MODEL: GEOLOGY

Geological Setting

- Hill AFB Site located on plateau incised by Weber River, result of prehistoric Lake Bonneville formation and recession
- ▶ Lithology
 - Heterogenous; Depositional fluvial and lacustrine sediment from Weber River Delta; lenticular

STRATIGRAPHY (SOURCE AREA)

Sources: Conceptual Site Model OU2 Source Area (URS Corp and INTERA 2013) (Left): OU2 Performance Standard Verification Report (USAF 2012)

CONCEPTUAL SITE MODEL: HYDROGEOLOGY

Two Hydrologic Units Underlying OU2:

- ► Shallow Aquifer System: Contaminated; semi- and un- confined
- Deep Delta Aquifer
 - Underlies Alpine Formation (aquitard)
 - Separate from shallow system
 - Regional water supply, no contamination

CONCEPTUAL SITE MODEL: CONTAMINANT FATE & TRANSPORT

- Source Area situated in Provo Alluvium within buried channel incised into the underlying Alpine Clay unit
 - Clay unit understood as aquitard
- DNAPL accumulated in paleochannel sources the nonsource plume
- Groundwater elevation within source area containment wall hydraulically controlled by groundwater extraction system to ensure inward gradient

Source: Conceptual Site Model OU2 Source Area (URS Corp and INTERA 2013)

CONCEPTUAL SITE MODEL: CONTAMINANT FATE & TRANSPORT

VC PLUME MIGRATION (2019)

PLUME MIGRATING OFF-BASE THROUGH LOWER ELEVATION ALPINE CLAY "SPILLOVER" PATHWAY

SITE INVESTIGATION: SCOPE

- ▶ Use HRSC techniques to assess potential transport pathways from the Source Area to the Non-source Area
 - On the lookout for:
 - Lower elevation spillover pathways in the Alpine Clay unit
 - Permeable pathways through the Alpine Clay "aquitard"
- ► Membrane interface probe/ hydraulic profiling tool (MIP/HPT) at 20 locations along Base boundary

OU2 Base boundary MIP/HPT points

U2-285

Source: Low Level MIP (Geoprobe Environmental Technologies, 2023)

SITE INVESTIGATION: HRSC FIELD ACTIVITIES

Install two borings using standard methods to "ground-truth" MIP/HPT data:

- 1. Collect VOC **soil** samples from select intervals using standard direct push (DPT) drilling methods
- Collect VOC groundwater samples from installed monitoring wells using hollow stem auger drilling methods
- 3. Continuously log to 50 ft bgs for borehole lithology

SITE INVESTIGATION: HPT RESULTS

PROVO ALLUVIUM AND ALPINE CLAY INTERFACE AT 22 FT BGS AT U2-271 (SOIL BORING)

► Sharp pressure increase on HPT log

INTERFACE OF FINE-GRAINED **UPPER AND WELL-SORTED** LOWER PROVO ALLUVIUM **AT U2-271**

40 —

50 — 52 -54

HPT Pressure

(psi)

SITE INVESTIGATION: MIP/HPT RESULTS

SITE INVESTIGATION: MIP/HPT RESULTS

XSD Max (uV ×106)

SITE INVESTIGATION: OU2 BASE BOUNDARY TRANSECT

RESULTS AND DISCUSSION

- ► TCE primarily in Alpine Clay and fine-grained Upper Provo formations along Base boundary
 - Alpine Formation currently modeled as aquitard
- ► TCE largely absent in permeable Lower Provo formation
 - Presumably "washed out;" contamination moving slower through tighter formations

BASE BOUNDARY TRANSECT

RESULTS AND DISCUSSION

- Sand lenses observed within the upper Alpine Clay Formation during logging
 - Sand not included in current lithologic modeling
- ► Water table overtops Alpine Clay unit at Base boundary
 - Wetness (and DNAPL) observed above Provo/Alpine interface

UPDATES TO CONCEPTUAL SITE MODEL

Re-evaluate hydraulic-based remedial system

source in Upper Alpine Clay unit

Source: Conceptual Site Model OU2 Source Area (URS Corp and INTERA 2013)

OPERABLE UNIT 2: NEXT STEPS

- Complete the investigation
- Generate and update 3D contaminant fate and transport model with HRSC data and site investigation results
- Reevaluate OU2's existing remedy, based on new understanding of contaminant transport pathways from the Source Area

Source: Conceptual Site Model OU2 Source Area (URS Corp and INTERA 2013)

QUESTIONS

JO PAVLOWSKY, P.E.

Johanna.Pavlowsky@APTIM.com

Mobile: 314 833 7325

Expect the Extraordinary.

OU2 TCE PLUME (1998–2022)

CONCEPTUAL SITE MODEL: CONTAMINANT FATE & TRANSPORT

OU 2 LOCATED WITHIN SOUTH WEBER LANDSLIDE COMPLEX

DNAPL MIGRATION THROUGH MEDIA

Source: Dense Chlorinated Solvents in Porous and Fractured Media (Schwile, 1988)

